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Preface

We have to look for routes of power our teachers never
imagined, or were encouraged to avoid.

—Thomas Pynchon, Gravity’s Rainbow

The emerging tapestry of complex systems research is being formed
by localized individual efforts that are becoming subsumed as part of a
greater pattern that holds a beauty and coherence that belies the lack of
an omniscient designer. As in Navajo weaving, efforts on one area of this
tapestry are beginning to meld into one another, leaving only faint “lazy
lines” to mark the event. The ideas presented in this book contain various
parts of this weaving; some are relatively complete, whereas others are
creative investigations that may need to be removed from the warp and
started anew. We suspect that, like the Navajo weavers of old, we will
also introduce a few errors—though perhaps not intentionally—that will
be more than sufficient to maintain our humility.

More than a decade ago, a wonderful coincidence of people, ideas,
tools, and scientific entrepreneurship converged at the Santa Fe Institute.
Those of us who participated in this event were blessed to partake in a
burst of scientific creativity that facilitated a new wave in the sciences of
complex systems. At that time, discussions about the central problems
and approaches in fields such as biology, chemistry, computer science,
economics, and physics made it clear that there was a common set
of questions that would require a willingness to transcend the usual
disciplinary boundaries if answers were to be forthcoming. Since that
time, a growing community of scholars has been actively involved in
developing the theory of complex adaptive social systems.

Although research in the area of complex adaptive social systems is
still in its formative stages, now is a good time to take stock of these
efforts. Along with documenting much of what we have learned over the
past decade, we will also be a bit exploratory, both retrospectively trying
to figure out why our initial intuitions about the importance of this area
were justified and prospectively suggesting where the new frontiers are
likely to be found.

During the past decade we have hosted an annual graduate workshop
in computational modeling. In these workshops, we collaborated with
a diverse set of graduate students who are interested in applying
new computational modeling techniques to key problems in the social
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sciences. Many of the topics presented throughout this book are the result
of discussions during these workshops.

Contrary to the sentiments in Pynchon’s quotation, we have been
blessed with some very imaginative and prescient teachers. For Miller,
Ken Boulding planted the initial meme that suggested that both biological
and social systems hold a deep similarity needing scientific investigation.
Ted Bergstrom and Hal Varian generously indulged and guided Miller’s
efforts during graduate school in investigating the behavior of artificial
adaptive agents in games. Bob Axelrod, John Holland, and Carl Simon
were also sources of encouragement, ideas, and wisdom at that time.
During the early days of the Santa Fe Institute, an outstanding group of
scholars gathered together to work on complex systems, including Phil
Anderson, Ken Arrow, Brian Arthur, George Cowan, Jim Crutchfield,
Doyne Farmer, Walter Fontana, Murray Gell-Mann, Erica Jen, Stu
Kauffman, David Lane, Blake LeBaron, Norman Packard, Richard
Palmer, John Rust, and Peter Stadler, all of whom have contributed in
various ways to the ideas presented here. Miller’s colleagues at Carnegie
Mellon University, in particular Greg Adams, Wes Cohen, Robyn Dawes,
George Loewenstein, John Patty, and especially Steven Klepper, have been
a continual source of ideas and encouragement, as has been Herb Simon,
whose contributions to complex systems and social science will continue
to inspire and craft research efforts far into the future.

For Page, his graduate adviser Stan Reiter organized a group of
students to investigate research on learning, adaptation, and communica-
tion, and these discussions eventually led him to the Santa Fe Institute to
learn more about complex systems. At that time, a lively and ongoing
collaboration that focused on computational political economy was
started among the authors and Ken Kollman. While at the California
Institute of Technology, Page benefited from many discussions about
mathematics, theory, complexity, and experiments, with Mike Alvarez,
John Ledyard, Richard McKelvey, Charlie Plott, and Simon Wilkie.
Page’s current colleagues in the Center for the Study of Complex Systems
at the University of Michigan, including Bob Axelrod, Jenna Bednar,
Dan Brown, Michael Cohen, Jerry Davis, John Holland, Mark Newman,
Mercedes Pascual, Rick Riolo, Carl Simon, and Michael Wellman, as well
as his collaborator Lu Hong, have also been extremely influential.

The authors wish to thank various students and seminar participants
across the world who have been kind enough to give us additional
insights into these ideas. In particular, Aaron Bramson, Scott deMarchi,
and Jonathan Lafky provided some detailed input. Chuck Myers at
Princeton University Press has also provided wonderful encourage-
ment and direction, and Brian MacDonald thoughtfully copyedited the
manuscript.
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Some of the nicest examples of interesting complex social systems
have emerged in our home institutions. We are grateful to the research
infrastructure of the Santa Fe Institute, Carnegie Mellon University,
and the University of Michigan. In particular, we would like to thank
Susan Ballati, Ronda Butler-Villa, Bob Eisenstein, Ellen Goldberg, Ginny
Greninger, George Gumerman, Ginger Richardson, Andi Sutherland,
Della Ulibarri, Laura Ware, Geoffrey West, and Chris Wood at the Santa
Fe Institute; Michele Colon, Carole Deaunovich, Amy Patterson, Rosa
Stipanovic, and Julie Wade at Carnegie Mellon University; and Mita
Gibson and Howard Oishi at the University of Michigan.
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C H A P T E R 1

Introduction

The goal of science is to make the wonderful and complex
understandable and simple—but not less wonderful.

—Herb Simon, Sciences of the Artificial

The process of scientific discovery is, in effect, a continual
flight from wonder.

—Albert Einstein, Autobiographical Notes

Adaptive social systems are composed of interacting, thoughtful (but
perhaps not brilliant) agents. It would be difficult to date the exact
moment that such systems first arose on our planet—perhaps it was
when early single-celled organisms began to compete with one another
for resources or, more likely, much earlier when chemical interactions
in the primordial soup began to self-replicate. Once these adaptive
social systems emerged, the planet underwent a dramatic change where,
as Charles Darwin noted, “from so simple a beginning endless forms
most beautiful and most wonderful have been, and are being, evolved.”
Indeed, we find ourselves at the beginning of a new millennium being not
only continually surprised, delighted, and confounded by the unfolding
of social systems with which we are well acquainted, but also in the
enviable position of creating and crafting novel adaptive social systems
such as those arising in computer networks.

What it takes to move from an adaptive system to a complex adaptive
system is an open question and one that can engender endless debate. At
the most basic level, the field of complex systems challenges the notion
that by perfectly understanding the behavior of each component part of
a system we will then understand the system as a whole. One and one
may well make two, but to really understand two we must know both
about the nature of “one” and the meaning of “and.”

The hope is that we can build a science of complexity (an obvious mis-
nomer, given the quest for simplicity that drives the scientific enterprise,
though alternative names are equally egregious). Rather than venturing
further on the well-trodden but largely untracked morass that attempts to
define complex systems, for the moment we will rely on Supreme Court
Justice Stewart’s words in his concurring decision on a case dealing with
obscenity (Jacobellis v. Ohio, 1964): “I shall not today attempt further
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to define the kinds of material I understand to be embraced within that
shorthand description; and perhaps I could never succeed in intelligibly
doing so. But I know it when I see it.”

The field of complex systems must direct its “flight from wonder”
toward discoveries that “make the wonderful and complex understand-
able and simple.” We hope that there is a complex systems equivalent
of Newton’s Laws of Motion that will one day make our current
computer simulations appear to us as archaic as machines implement-
ing Ptolemy’s epicycles. Even when the fundamental laws of complex
adaptive social systems are uncovered, however, it is unlikely that our
flight from wonder will be complete. Knowing Newton’s Laws of Motion
reveals a key simplicity in the world around us, and while we may
take delight in the power of so simple an idea to explain the motion
of our universe, the thrill of the discovery quickly wanes with the
mundaneness of the outcome. Laws emerging from complex adaptive
systems have an entirely different character—knowing Darwin’s theory of
evolution in no way diminishes the wonder that ensues as we observe its
implications.

Writings on complexity in the social sciences go back hundreds of
years, with Adam Smith’s The Wealth of Nations (1776) representing one
of the earliest and most cohesive discussions of the topic (see figure 1.1).
One of the prime drivers of economic theory over the past two centuries
has been Smith’s concept of an “invisible hand” leading collections of
self-interested agents into well-formed structures that are no part of any
single agent’s intention. Although much theoretical progress has been
made on this idea, for example, the elegant proofs of existence given
by Arrow and Debreu or the various contributions based on fanciful
mechanisms like Walrasian auctioneers, the actual mechanisms behind
the invisible hand still remain largely, dare we say, invisible.

Indeed, the tools and ideas that have been developed over the past
decade hint at a new world of scientific possibilities for understanding
complex adaptive social systems. While our ability to theorize about
social systems has always been vast, the set of tools available for
pursuing these theories has often constrained our theoretical dreams
either implicitly or explicitly. Smith faced few limits while writing
about the complexity of the world around him, whereas Arrow and
Debreu’s existence proof required a much more constrained view of
social behavior. Often, tools get mistaken for theories with unfortunate
consequences; elaborate computer programs (perhaps with lovely graph-
ics) or mathematical derivations are occasionally assumed to make a real
scientific statement, regardless of their scientific underpinnings. Indeed,
entire literatures have undergone successive refinements and scientific
degradation, during each generation of which the original theoretical
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Figure 1.1. Adam Smith and The Wealth of Nations (1776). Smith’s writings
represent one of the earliest coherent descriptions of complexity in social
systems.

notions driving the investigation are crowded out by an increasing focus
on tool adeptness. This often results in science that is “smart but not
wise.”

Using traditional tools, social scientists have often been constrained to
model systems in odd ways. Thus, existing models focus on fairly static,
homogeneous situations composed of either very few or infinitely many
agents (each of whom is either extremely inept or remarkably prescient)
that must confront a world in which time and space matter little. Of
course, such simplicity in science is a virtue, as long as the simplifications
are the right ones. Yet, it seems as though the world we wish to know lies
somewhere in between these extremes.

One of the most powerful tools arising from complex systems research
is a set of computational techniques that allow a much wider range of
models to be explored. With these tools, any number of heterogeneous
agents can interact in a dynamic environment subject to the limits of
time and space. Having the ability to investigate new theoretical worlds
obviously does not imply any kind of scientific necessity or validity—
these must be earned by carefully considering the ability of the new
models to help us understand and predict the questions that we hold
most dear.
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The science of complex systems is a rapidly evolving area, in terms
of both domains and methods. The interest in this area, as well as its
rapid subsequent diffusion, has been rather remarkable (especially in a
field like economics, where, as Paul Samuelson (1999, xi) once remarked,
“science advances funeral by funeral”). We intend for this book both to
summarize some key past contributions as well as to lay out an agenda
for the future. Any such agenda will require the efforts of many scientists,
and we hope to provide sufficient insights and practical guidance so that
others can productively join in this research effort.

The tools and ideas emerging from complex systems research com-
plement existing approaches, and they should allow us to build much
better theories about the world when they are carefully integrated with
existing techniques. Some of the discussions in this book surround basic
issues in good scientific modeling. Having a good understanding of these
issues is certainly a prerequisite for anyone interested in pursuing work
in this area, and unfortunately explicit discussions of modeling are rarely
encountered by most scholars.

The book’s central theme, “The Interest in Between,” has two mean-
ings. The first relates to the level and techniques we use to illustrate the
core material in complex adaptive social systems. The second concerns
the scientific space that this area occupies.

Complex systems has become both a darling of the popular press
and a rapidly advancing scientific field. Unfortunately, this creates a
gap between popular accounts that rely on amorphous metaphors and
cutting-edge research that requires a technical background. Here we
hope to provide a point of entry that lies between metaphor and
technicalities. Our work focuses on simple examples that are accessible,
yet also contain much deeper foundational insights. This approach is
analogous to learning game theory by studying the Prisoner’s Dilemma
or the Centipede game. While game theory rests on a very abstract and
technical foundation—fixed points, hemicontinuous correspondences,
and the like—most of the core insights are contained in the analysis of
these simple games. In a similar spirit, here we rely on simple models and
examples to convey the key ideas. These illustrations will exist in between
metaphor and abstract mathematics, in between the flowery language
that has taken hold in the press and concrete computations. We view this
“in-between” as a good point of entry into the material and hope that it
gives readers the ability and interest to dig deeper into the field as they
see fit.

We have strived to make this book accessible to both academics and the
sophisticated lay reader. Whether you are a graduate student or faculty
member in the social sciences trying to understand better what complex
systems is about and how it could be used, an engineer hoping to improve
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your models of processes by using social agents, or someone interested in
business, economics, or politics who wants a deeper understanding of the
causes and implications of complexity, you should find this book useful
and approachable.

Ultimately the study of complex systems illuminates the interest in
between the usual scientific boundaries.

It is the interest in between various fields, like biology and eco-
nomics and physics and computer science. Problems like organization,
adaptation, and robustness transcend all of these fields. For example,
issues of organization arise when biologists think about how cells form,
economists study the origins of firms, physicists look at how atoms align,
and computer scientists form networks of machines.

It is the interest in between the usual extremes we use in modeling. We
want to study models with a few agents, rather than those with only one
or two or infinitely many. We want to understand agents that are neither
extremely brilliant nor extremely stupid, but rather live somewhere in the
middle.

It is the interest in between stasis and utter chaos. The world tends not
to be completely frozen or random, but rather it exists in between these
two states. We want to know when and why productive systems emerge
and how they can persist.

It is the interest in between control and anarchy. We find robust
patterns of organization and activity in systems that have no central
control or authority. We have corporations—or, for that matter, human
bodies and beehives—that maintain a recognizable form and activity over
long periods of time, even though their constituent parts exist on time
scales that are orders of magnitude less long lived.

It is the interest in between the continuous and the discrete. The
behavior of systems as we transition between the continuous and discrete
is often surprising. Many systems do not smoothly move between these
two realms, but instead exhibit quite different patterns of behavior, even
though from the outside they seem so “close.”

It is the interest in between the usual details of the world. We need to
find those features of the world where the details do not matter, where
large equivalence classes of structure, action, and so on lead to a deep
sameness of being.

The science of complex systems and its ability to explore the interest
in between is especially relevant for some of the most pressing issues of
our modern world. Many of the opportunities and challenges before us—
globalization, sustainability, combating terrorism, preventing epidemics,
and so on—are complex. Each of these domains consists of a set of
diverse actors who dynamically interact with one another awash in a sea
of feedbacks. To understand, and ultimately to harness, such complexity
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will require a sustained and imaginative effort on the part of researchers
across the sciences.

Kenneth Boulding summarized science as consisting of “testable and
partially tested fantasies about the real world.” The science of complex
systems is not a new way of doing science but rather one in which new
fantasies can be indulged.
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Complexity in Social Worlds

I adore simple pleasures. They are the last refuge of the
complex.

—Oscar Wilde, The Picture of Dorian Gray

When a distinguished but elderly scientist states that
something is possible, he is almost certainly right. When he
states that something is impossible, he is very probably
wrong.

—Arthur C. Clarke, Report on Planet Three

We are surrounded by complicated social worlds. These worlds are
composed of multitudes of incommensurate elements, which often make
them hard to navigate and, ultimately, difficult to understand. We would,
however, like to make a distinction between complicated worlds and
complex ones. In a complicated world, the various elements that make up
the system maintain a degree of independence from one another. Thus,
removing one such element (which reduces the level of complication)
does not fundamentally alter the system’s behavior apart from that which
directly resulted from the piece that was removed. Complexity arises
when the dependencies among the elements become important. In such a
system, removing one such element destroys system behavior to an extent
that goes well beyond what is embodied by the particular element that is
removed.

Complexity is a deep property of a system, whereas complication is
not. A complex system dies when an element is removed, but complicated
ones continue to live on, albeit slightly compromised. Removing a seat
from a car makes it less complicated; removing the timing belt makes it
less complex (and useless). Complicated worlds are reducible, whereas
complex ones are not.

While complex systems can be fragile, they can also exhibit an unusual
degree of robustness to less radical changes in their component parts.
The behavior of many complex systems emerges from the activities of
lower-level components. Typically, this emergence is the result of a very
powerful organizing force that can overcome a variety of changes to the
lower-level components. In a garden, if we eliminate an insect the vacated
niche will often be filled by another species and the ecosystem will
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continue to function; in a market, we can introduce new kinds of traders
and remove old traders, yet the system typically maintains its ability to
set sensible prices. Of course, if we are too extreme in such changes, say,
by eliminating a keystone species in the garden or all but one seller in the
market, then the system’s behavior as we know it collapses.

When a scientist faces a complicated world, traditional tools that rely
on reducing the system to its atomic elements allow us to gain insight.
Unfortunately, using these same tools to understand complex worlds
fails, because it becomes impossible to reduce the system without killing
it. The ability to collect and pin to a board all of the insects that live in
the garden does little to lend insight into the ecosystem contained therein.

The innate features of many social systems tend to produce complexity.
Social agents, whether they are bees or people or robots, find themselves
enmeshed in a web of connections with one another and, through a
variety of adaptive processes, they must successfully navigate through
their world. Social agents interact with one another via connections.
These connections can be relatively simple and stable, such as those
that bind together a family, or complicated and ever changing, such as
those that link traders in a marketplace. Social agents are also capable of
change via thoughtful, but not necessarily brilliant, deliberations about
the worlds they inhabit. Social agents must continually make choices,
either by direct cognition or a reliance on stored (but not immutable)
heuristics, about their actions. These themes of connections and change
are ever present in all social worlds.

The remarkable thing about social worlds is how quickly such con-
nections and change can lead to complexity. Social agents must predict
and react to the actions and predictions of other agents. The various
connections inherent in social systems exacerbate these actions as agents
become closely coupled to one another. The result of such a system is that
agent interactions become highly nonlinear, the system becomes difficult
to decompose, and complexity ensues.

2.1 The Standing Ovation Problem

To begin our exploration of complex adaptive social systems we consider
a very simple social phenomenon: standing ovations (Schelling, 1978;
Miller and Page, 2004). Standing ovations, in which waves of audience
members stand to acknowledge a particularly moving performance,
appear to arise spontaneously.1 Although in the grand scheme of things

1There are circumstances, such as the annual State of the Union address before the U.S.
Congress, where such behavior is a bit more orchestrated.
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standing ovations may not seem all that important, they do have some
important parallels in the real world that we will discuss later. Moreover,
they provide a convenient starting point from which to explore some key
issues in modeling complex social systems.

Suppose we want to construct a model of a standing ovation. There is
no set method or means by which to do so. To model such a phenomenon
we could employ a variety of mathematical, computational, or even
literary devices. The actual choice of modeling approach depends on
our whims, needs, and even social pressure emanating from professional
fields.

Regardless of the approach, the quest of any model is to ease thinking
while still retaining some ability to illuminate reality.

A typical mathematical model of a standing ovation might take the
following tack. Assume an audience of N people, each of whom receives
a signal that depends on the actual quality of the performance, q. Let
si (q) give the signal received by person i . We might further specify the
signal process by, say, assuming a functional form such as si (q) = q + εi ,
where εi is a normally distributed random variable with a mean of zero
and standard deviation of σ . To close the model, we might hypothesize
that in response to the signal, each person stands if and only if si (q) > T,
where T is some critical threshold above which people are so moved by
the performance that they stand up and applaud.

Given this simple mathematical model, how much of reality can we
illuminate? The model could be used to make predictions about how
many people would stand. We could tie this prediction to key features of
the model; thus, we can link the elements like the quality (q) of the per-
formance, the standing threshold (T), and even the standard deviation of
the signal (σ ) to the likelihood of an initial ovation of a given size. Given
the current form of the model, that is about the extent of what we can
predict. These predictions do provide some illumination on reality, but
they fail to illuminate some of the key elements that make this problem
so interesting in the first place (like the waves of subsequent standing).

Given this, we might want to amend the model to shed a bit more light
on the subject at hand. It is probably the case that people respond to the
behavior of others in such situations. Therefore, we can add a parameter
α that gives the percentage of people who must stand for others to ignore
their initial signals and decide to stand up regardless. In some fields, like
economics, we might even delve a bit deeper into the notion of α and
see if we can tie it to some first principles, for example, perhaps people
realize that their signals of the performance are imperfect and thus they
update them using the information gathered by observing the behavior
of others. We will avoid such complications here and just assume that α

exists for whatever reason.
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Our elaborated model provides some new insights into the world. If
the initial group of people standing exceeds α percent, then everyone
will rise; if it falls short of this value, then the standing ovation will
remain at its initial level. Again, we can tie the elements of the model to
a prediction about the world. By knowing the likelihood of various-sized
initial ovations, we can predict (given an α) the likelihood of everyone
else joining the ovation.

As clean and elegant as the mathematical model may be, it still leaves
us wanting some more illumination. For example, we know that real
ovations do not behave in the extreme way predicted by the model;
rather, they often exhibit gradual waves of participation and also form
noticeable spatial patterns across the auditorium. In the model’s current
form, too much space exists in between what it illuminates and what we
want to know about the real world.

To capture this additional illumination, we might extend the mathe-
matical model even further by using ideas from complex systems. This
approach may require us to model using a different substrate, most
likely indirect computation rather than direct mathematics, but for the
moment this choice is less important than the directions we wish to take
the modeling. The first elaboration we could undertake is to place each
person in a seat in the auditorium, rather than assuming that they attend
the theater on the head of a pin. Furthermore, we might want to assume
that people have connections to one another, that is, that people arrive
and sit with acquaintances (see figure 2.1).2

Once we allow people to sit in a space and locate next to friends,
the driving forces of the model begin to change. For example, the initial
assumption of independent signals is now suspect. It is likely that people
seated in one part of the theater (or “side of the aisle”) receive a different
set of signals than others. Locations not only determine physical factors,
such as which other patrons someone can see, but also may reflect a
priori preferences for the performance that is about to begin. Similarly, in
an audience composed of friends and strangers, people may differentially
weight the signals sent by their friends, either because of peer pressure or
because the friendships were initially forged based on common traits.

Assuming that individuals now have locations and friends introduces
an important new source of heterogeneity. In the mathematical model,
the only heterogeneity came from the different draws of εi . Now, even
“identical” individuals begin to behave in quite different ways, depending
on where, and with whom, they are seated.

2We once had a group of economics graduate students model the standing ovation. Not
one of them allowed the possibility of people attending the theater with acquaintances. We
hope this is more a reflection of how economists are trained than of how they live.
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Figure 2.1. Two views of modeling the standing ovation. In its simplest
form, the model requires that everyone shares the same seat in the auditorium
(left), while the more elaborate model (right) allows space, friendship
connections, and physical factors like vision to play a vital role in the system.
While the simple model might rely on traditional tools like formal mathematics
and statistics, the more elaborate model may require new techniques like
computational models using agent-based objects to be fully realized.

The dynamics of the model also becomes more complicated. In
the original model, we had an initial decision to stand, followed by
a second decision based on how many people stood initially. After this
second decision, the model reached an equilibrium where either the
original group remained standing or everyone was up on their feet.
The new model embodies a much more elaborate (and likely realistic)
dynamics. In general, it will not be the case that the model attains an
equilibrium after the first two rounds of updating. Typically, the first
round of standing will induce others to stand, and this action will cause
others to react; in this way, the system will display cascades of behavior
that may not settle down anytime soon.

These two modeling approaches illuminate the world in very different
ways. In the first model either fewer than α percent stand or everyone
does; in the second it is possible to have any percentage of people left
standing. In the first model the outcome is determined after two periods;
in the second cascades of behavior wash over the auditorium and often
reverberate for many periods. In the first model everyone’s influence
is equal; in the second influence depends on friendships and even seat
location. Oddly, the people in the front have the most visual influence
on others yet also have the least visual information, whereas those in
the back with the most information have the least influence (think of the
former as celebrities and the latter as academics).
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The second model provides a number of new analytic possibilities. Do
performances that attract more groups lead to more ovations? How does
changing the design of the theater by, say, adding balconies, influence
ovations? If you want to start an ovation, where should you place your
shills? If people are seated based on their preferences for the performance,
say, left or right side of the aisle or more expensive seats up front, do you
see different patterns of ovations?

Although standing ovations per se are not the most pressing of social
problems, they are related to a large class of important behaviors that
is tied to social contagion. In these worlds, people get tied to, and
are influenced by, other people. Thus, to understand the dynamics of
a disease epidemic, we need to know not only how the disease spreads
when one person contacts another but also the patterns that determine
who contacts whom over time. Such contagion phenomena drive a
variety of important social processes, ranging from crime to academic
performance to involvement in terrorist organizations.

2.2 What’s the Buzz?

Heterogeneity is often a key driving force in social worlds. In the
Standing Ovation problem, the heterogeneity that arose from where
people sat and with whom they associated resulted in a model rich
in behavioral possibilities. If heterogeneity is a key feature of complex
systems, then traditional social science tools—with their emphases on
average behavior being representative of the whole—may be incomplete
or even misleading.

In many social scenarios, differences nicely cancel one another out.
For example, consider tracking the behavior of a swarm of bees. If you
observe any one bee in the swarm its behavior is pretty erratic, making an
exact prediction of that bee’s next location nearly impossible; however,
keep your eye on the center of the swarm—the average—and you can
detect a fairly predictable pattern. In such worlds, assuming behavior
embodied by a single representative bee who averages out the flight paths
of all of the bees within the swarm both simplifies and improves our
ability to predict the future.

2.2.1 Stay Cool

While differences can cancel out, making the average a good predictor
of the whole, this is not always the case. In complex systems we often
see differences interacting with one another, resulting in behavior that
deviates remarkably from the average.
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To see why, we can return to our bees. Genetic diversity in bees
produces a collective benefit that plays a critical function in maintaining
hive temperature (Fischer, 2004). For honey bees to reproduce and grow,
they must maintain the temperature of their hive in a fairly narrow range
via some unusual behavioral mechanisms. When the hive gets too cold,
bees huddle together, buzz their wings, and heat it up. When the hive gets
too hot, bees spread out, fan their wings, and cool things down.

Each individual bee’s temperature thresholds for huddling and fanning
are tied to a genetically linked trait. Thus, genetically similar bees all feel
a chill at the same temperature and begin to huddle; similarly, they also
overheat at the same temperature and spread out and fan in response.

Hives that lack genetic diversity in this trait experience unusually
large fluctuations in internal temperatures. In these hives, when the
temperature passes the cold threshold, all the bees become too cold at
the same time and huddle together. This causes a rapid rise in temperature
and soon the hive overheats, causing all the bees to scatter in an
over ambitious attempt to bring down the temperature. Like a house
with a primitive thermostat, the hive experiences large fluctuations of
temperature as it continually over- and undershoots its ideals.

Hives with genetic diversity produce much more stable internal
temperatures. As the temperature drops, only a few bees react and
huddle together, slowly bringing up the temperature. If the temperature
continues to fall, a few more bees join into the mass to help out. A
similar effect happens when the hive begins to overheat. This moderate
and escalating response prevents wild swings in temperature. Thus, the
genetic diversity of the bees leads to relatively stable temperatures that
ultimately improve the health of the hive.

In this example, considering the average behavior of the bees is very
misleading. The hive that lacked genetic diversity—essentially a hive of
averages—behaves in a very different way than the diverse hive. Here,
average behavior leads to wide temperature fluctuations whereas hetero-
geneous behavior leads to stability. To understand this phenomenon, we
need to view the hive as a complex adaptive system and not as a collection
of individual bees whose differences cancel out one another.

2.2.2 Attack of the Killer Bees

We next wish to consider a model of bees attacking a threat to the
hive.3 Some bees go through a maturation stage in which they guard the

3This is a simplified version of models of human rioting constructed by Grannoveter
(1978) and Lohmann (1993). Unlike the previous example, the direct applicability to bees
is more speculative on our part.
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entrances to the hive for a short period of time. When a threat is sensed,
the guard bees initiate a defensive response (from flight, to oriented flight,
to stinging) and also release chemical pheromones into the air that serve
to recruit other bees into the defense.

To model such behavior, assume that there are one hundred bees
numbered 1 through 100. We assume that each bee has a response
threshold, Ri , that gives the number of pheromones required to be in
the air before bee i joins the fray (and also releases its pheromone).
Thus, a bee with Ri = 5 will join in once five other bees have done
so. Finally, we assume that when a threat to the hive first emerges,
R bees initiate the defensive response (to avoid some unnecessary
complications, let these bees be separate from the one hundred bees we
are watching). Note that defensive behavior is decentralized in a beehive:
it is initiated by the sentry activities of the individual guard bees and per-
petuated by each of the remaining bees based only on local pheromone
sensing.

We consider two cases. In the first case, we have a homogeneous hive
with Ri = 50.5 for all i . In the second case, we allow for heterogeneity
and let Ri = i for all i . Thus, in this latter case each bee has a different
response threshold ranging from one to one hundred. Given these two
worlds, what will happen?

In the homogeneous case, we know that a full-scale attack occurs if
and only if R > 50. That is, if more than fifty bees are in the initial
wave, then all of the remaining one hundred will join in; otherwise the
remaining bees stay put. In the heterogeneous case, a full-scale attack
ensues for any R ≥ 1. This latter result is easy to see, because once at
least one bee attacks, then the bee with threshold equal to one will join
the fray, and this will trigger the bee with the next highest threshold to
join in, and so on.

Again, notice how average behavior is misleading. The average thresh-
old of the heterogeneous hive is identical to that of the homogeneous
hive, yet the behaviors of the two hives could not be more different.
It is relatively difficult to get the homogeneous hive to react, while the
heterogeneous one is on a hair trigger. Without explicitly incorporating
the diversity of thresholds, it is difficult to make any kind of accurate
prediction of how a given hive will behave.

2.2.3 Averaging Out Average Behavior

Note that the two systems we have explored, regulating temperature and
providing defense, have very different behaviors linked to heterogeneity.
In the temperature system, heterogeneity leads to stability. That is,
increased heterogeneity improves the ability of the system to stabilize
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on a given temperature. In the defense system, however, heterogeneity
induces instability, with the system likely to experience wild fluctuations
in response to minute stimuli.

The difference of response between the two systems is due to feedback.
In the temperature system, heterogeneity introduces a negative feedback
loop into the system: when one bee takes action, it makes the other bees
less likely to act. In the defense system, we have a positive feedback
loop: when one bee takes action, it makes the other bees more likely
to act.

2.3 A Tale of Two Cities

To explore further the modeling of complexity, we consider a simple
world composed of two towns, each of which has three citizens.
Furthermore, we assume that each town has to make a choice about
an important public issue: whether to serve its citizens red or green chile
at its annual picnic. Citizens possess preferences over chile and strongly
prefer one type over the other.4 To make the analysis interesting, we
assume that two of the citizens in each town prefer green to red chile
while the remaining person prefers the opposite.

Though stark, this scenario builds from an extensive literature in
the social sciences on the allocation of public goods and services to
citizens (Samuelson, 1954; Tiebout, 1956). Public goods and services
flow across all members of society without exclusion or diminution once
offered. Moreover, as we will see, the model also touches on even deeper
issues surrounding the decentralized sorting of agents within a complex
adaptive system.

Before we can explore the behavior of the model, we need to define
two further elements. The first is how does a town, given a set of citizens,
select what chile to offer. The second is how do citizens react to the
choices of the towns.

A town could use several mechanisms to decide what type of chile to
offer. It could employ a dictator, flip a coin, or implement some other
political process, such as majority rule. For the moment, we will assume
that each town uses majority rule. Given this scenario, majority rule
implies that each town will always offer green chile (two votes to one).
Note that this outcome is not ideal, as one citizen in each town always
ends up consuming her less-preferred meal (see figure 2.2).

4For those who enjoy both, New Mexican restaurants offer the option of ordering your
chile “Christmas.”
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Town A Town B

Figure 2.2. A symmetric Tiebout world. Here two towns each have three
citizens, two of whom prefer green to red chile. Both towns currently offer green
chile at their annual picnic. Given this scenario, the system is at an equilibrium,
even though two of the citizens are not getting their favorite chile.

Now, suppose we give our citizens some mobility, that is, any citizen is
free to switch towns if she so desires. We assume that citizens will move
only if the alternative town is offering a better meal. If each town is
serving green chile, no citizen has any incentive to relocate and everyone
stays put.

Yet, something should be done. The current situation possesses a tragic
symmetry that prevents the red chile lovers from every realizing their
favored outcome since they are always the minority in either town. To
improve this situation, we must find a way to break the symmetry.

One way to break the symmetry is to introduce some randomness into
the system. For example, we could have one citizen randomly decide to
move to the other town for whatever reason. If this citizen is a red chile
lover, then the town she vacated is left with two green chile lovers and
her new town now has two people who like red and two who like green
chile. Instead, if the citizen that relocates is a green chile lover, then the
vacated town is left with one of each type, while the other town now has
three green and one red chile lover. Notice that regardless of who moves,
we are always left with one town that is strongly green chile and one that
has equal numbers of each type.

Given this situation, we would expect that eventually the town with a
split vote will offer red instead of green chile. Once this occurs, we now
have one town offering red and one offering green chile. The symmetry
is now broken, and the citizens in each town can immediately re-sort
themselves and self-select the town that perfectly meets their chile needs.
This leaves one town offering green chile populated by four green chile
lovers and one town offering red chile with two red chile lovers, and all
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Town A Town B 

Figure 2.3. Broken symmetry in the Tiebout world. Once the two towns offer
different types of chile—perhaps due to noise in the political system—the
citizens will immediately re-sort themselves. The system again attains an
equilibrium, though in this case each citizen now gets her favorite type of chile.
Note that this new equilibrium is much more robust to minor perturbations
than the former one.

of the citizens would be worse off if they moved (see figure 2.3). This
latter configuration is quite stable to random moves of individuals, as a
single citizen moving will not alter the majority in either town.

An alternative way to break the symmetry is to alter slightly the
behavioral rules that control our citizens. Suppose that agents are willing
to relocate if they can at least maintain their level of happiness (rather
than improve it). Such a change in behavior allows for what biologists
call neutral mutations, that is, movements in the underlying structure that
do not directly impact outcomes. Even though neutral mutations do not
have an immediate effect, they can lead to better outcomes eventually by
changing what is possible. In the initial case, any of the citizens is willing
to move since both towns offer the same type of chile. Regardless of
who moves, one town is always left with a split vote, and the symmetry
breaking we saw previously is again possible.

The system demonstrates some key features of complex adaptive
social systems. First, we have a web of connections that, in this case,
results from citizens linking to one another by being resident in a given
town. Second, we see change induced by choices made by all of the
different types of agents in the system. Citizens must decide where to
move, and towns must decide what type of chile to offer. Moreover,
the system as a whole must “decide” how to sort the citizens among
the towns, although this latter “choice” is not a conscious calculation
of the system per se, but rather an implicit computation resulting from
the decentralized choices made by each citizen and town. The model also
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demonstrates how a social system can get locked into an inferior outcome
and how, with the introduction of noise or different behavioral rules,
it can break out of such outcomes and reconfigure itself into a better
arrangement.

The model also incorporates other key themes in complex adaptive
social systems: equilibria, dynamics, adaptation, and the power of
decentralized interactions to organize a system. The system has multiple
equilibria, some of which are inferior to others. The key dynamics that
occur in the model are the choice dynamics of each town induced by
the voting system and the movement dynamics of each citizen implied
by her preferences and each town’s offerings. Note that these dynamics
imply that towns adapt to citizens, while citizens also adapt to towns.
Finally, we see how the system’s dynamics result in local, decentralized
behaviors that ultimately organize the citizens so that their preferences
align with other citizens and each town’s offerings align with its
residents.

2.3.1 Adding Complexity

While our model gives us some useful intuitions and insights, it is also
(quite intentionally) very limited. Like all good models, it was designed
to be just sufficient to tell a story that could be understood easily yet
have enough substance to provide some insights into broader issues.
Moving beyond the limitations of this model is going to require some
compromises—namely, if we want to expand the potential for insights,
we will likely need to complicate the model and, perhaps, muddy the
analytic waters.

For example, suppose we wish to explore more fully Tiebout’s (1956)
concept of “voting with your feet.” That is, can we characterize better the
ability of social systems to sort citizens dynamically among towns? The
simplifications in the preceding model were rather drastic; we had two
towns, six citizens, a single issue (choice of chile), and a single mechanism
to determine what each town offered (majority rule). If we wish to go
beyond any of these constraints, we will quickly start to run into trouble
in pursuing the thought experiment framework used previously.

In economics, formal modeling usually proceeds by developing math-
ematical models derived from first principles. This approach, when well
practiced, results in very clean and stark models that yield key insights.
Unfortunately, while such a framework imposes a useful discipline on
the modeling, it also can be quite limiting. The formal mathematical
approach works best for static, homogeneous, equilibrating worlds. Even
in our very simple example, we are beginning to violate these desiderata.
Thus, if we want to investigate richer, more dynamic worlds, we need
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to pursue other modeling approaches. The trade-off, of course, is that
we must weigh the potential to generate new insights against the cost of
having less exacting analytics.

One promising alternative approach is the development of
computation-based models. In the Tiebout system, through computation
we can allow multiple towns and citizens, as well as more elaborate
preference and choice mechanisms. Thus, we can consider a world in
which each town must make binary choices over multiple issues, such
as whether to, say, serve red or green chile at the annual picnic, allow
smoking in public places, and set taxes either high or low. Once we
admit multiple issues, our citizens will need to have more complicated
preference structures to account for the more elaborate set of choices.
This will imply that, instead of just two types of citizens, we now have a
much more heterogeneous population. Finally, instead of using majority
rule as the sole means by which a town chooses its offerings, we can
admit a variety of other possible social choice mechanisms. For example,
towns might use a form of democratic referenda where, like simple
majority rule, citizens get to vote on each issue and the majority wins; or
perhaps the towns could rely on political parties that develop platforms
(positions on each possible choice) and then vie for the votes of the
populace.

Rather than fully pursuing the detailed version of the model we
just outlined (interested readers should see Kollman, Miller, and Page,
1997), here we provide just an overview. Using computation, we can
explore a world with multiple issues, citizens, towns, choices, and choice
mechanisms. For example, consider a model where each town must make
binary decisions across eleven issues. Each citizen has a preference for
each issue that takes the form of a (randomly drawn) weight that is
summed across all of the choices in a town’s platform to determine the
citizen’s overall happiness. Of particular interest at the moment is the
effectiveness of different public choice mechanisms in allocating citizens
to towns and towns to platforms.

We will allow towns to use a variety of choice mechanisms to
determine what they will offer. At one extreme we can employ democratic
referenda (essentially majority rule on an issue-by-issue basis), while at
the other we will consider a party-based political processes whereby
political parties propose platforms and then compete with one another
for votes. In this latter mechanism, we can consider worlds with two
or more parties, either where the winning party takes all in direct
competition (that is, the winning party’s platform is what the town offers)
or where, in a system of proportional representation, the final platform
offered by the town is a blend, weighted by votes, of each individual
party’s platform.
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Again, we impose a simple dynamic on the system: the citizens in
a town, mediated by the choice mechanism, determine what the town
will offer across the eleven issues and, once that is determined, citizens
look around and move to their favorite town based on their own
preferences and each town’s current offerings. We iterate this process
multiple times and ultimately investigate the final match of citizens to
towns and towns to issues. For the moment, we judge each mecha-
nism only by its effectiveness at maximizing the overall happiness of
the citizens after a fixed amount of time. Thus, a good outcome will have
citizens with similar preferences living in the same town, and that town
offering a platform that aligns well with the preferences of its, relatively
homogeneous, residents.

To get our bearings, first consider the case of a world with only a
single town. In such a world the dynamic implied by citizens moving
from town to town is nullified, and the only dynamic element of the
model is that arising from the town altering its offerings via the choice
mechanism. Thus, the best outcome will depend on the ability of the
choice mechanism to come up with a platform that closely matches
the preferences of the population. We find that, under these conditions,
democratic referenda lead to the best outcome, followed by two political
parties competing under direct competition, then multiple parties with
proportional representation, and finally more than two parties using
direct competition. Under democratic referenda, the system immediately
locks into the median position of the voters on each issue; under the
other mechanisms, party competition can result in the town’s platform
changing from period to period and not necessarily achieving the median
on any one issue. Under the preference structure of our model, the median
voter position on each issue will typically maximize the overall welfare of
a fixed group of citizens confined to a single town. Therefore, democratic
referenda are the best mechanisms for maximizing social welfare in a
world consisting of only a single town.

Oddly, when we allow additional towns into the system, democratic
referenda no longer lead to the highest social welfare. In fact, the
effectiveness of the different choice mechanisms is completely reversed,
and democratic referenda become the worst possible institution rather
than the best. (See figure 2.4.)

Why does this happen? Fortunately, computational models are quite
amenable to exploring such questions; in essence, we have a laboratory
on the desktop and can systematically propose, test, and eliminate key
hypotheses to understand better the outcomes we are observing.

To develop some needed intuition, consider the following. If we are
interested in maximizing the overall happiness of our citizens with
multiple towns, we must achieve two ends. First, we need to sort
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Figure 2.4. Results of a computational Tiebout model. As we increase the
number of towns in the system, the effectiveness of the different choice
mechanisms in achieving high social welfare completely reverses.

the citizens among the available towns so that citizens with similar
preferences reside in the same town. Without such a sorting, the social
welfare generated by each town will be compromised given the diversity
of wants. Second, each town must choose across the issues so as to
maximize the happiness of its residents. As noted, democratic referenda
are very effective at deriving a stable platform of choices that maximizes
happiness for a given town. Given this observation, the failure of
democratic referenda with multiple towns must be related to their
inability to sort adequately the citizens among the towns.

A deeper investigation into the dynamics of the system confirms that
the mechanisms other than democratic referenda result in far more
initial movement of the citizens among the towns. Democratic referenda
tend to stabilize the system quickly, freezing the citizens and platforms
in place after only a few iterations. That is, after only a few rounds
each town is offering a fixed platform, and no citizen wants to move.
The other mechanisms are much more dynamic, in the sense that the
platforms of each town keep changing during the early periods and
the citizens tend to migrate much more often. Eventually, even these
latter systems settle down to a state with little platform change and few
migrations.

Earlier we saw how noise in the system allows it to break out
of inferior sortings and to lock into superior ones. Of course, noise
alone is not sufficient to guarantee a quality sorting of the citizens—
to achieve high levels of social welfare, you need the noise to result in
relatively homogeneous groups of citizens in each town and each town
implementing platforms that approach something akin to the median
issue positions across the local voters.

In fact, the choice mechanisms that work best in our more complicated
model have a subtle, but key, property. These mechanisms tend to
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introduce noise into the system when the local citizens’ preferences are
heterogeneous and to reduce this noise as the citizens become more
homogeneous. Thus, if the citizens in a given town have very different
preferences from one another, the more successful mechanisms will
tend to induce more sorting. As the local citizens become more and
more similar, these same mechanisms tend to converge on something
approaching the median position on each issue. The notion that good
political mechanisms should have such an inherent design is somewhat
intuitive: if everyone in a district wants the same thing, the mechanism
should deliver it; if, on the other hand, there is a diversity of wants, then
the political process should jump around among the various options.

This “natural” annealing process turns out to be a very effective
way to promote the decentralized sorting of citizens among towns. To
achieve the highest social welfare, we need homogeneous collections
of citizens in each town receiving roughly the median policy of the
local residents. When the overall sorting of the system is poor, that
is, when the mix of citizens in each town tends to be heterogeneous
rather than homogeneous, then we should introduce a lot of noise into
the platforms. Such noise will induce some citizens to migrate, and this
migration will often cascade across other towns and result in a fairly
large-scale resorting of the citizens. However, as the citizens become
better sorted, that is, as each town becomes more homogeneous, the
choice mechanisms should “cool” (anneal) the system by stabilizing on
platforms that closely match the relatively homogeneous preferences of
each town’s citizens.

The notion of annealing to improve the structure of decentralized
systems was first recognized a few thousand years ago in early metal-
working. Heating metal tends to disrupt the alignment of (add noise
to) the individual atoms contained in a metal; then, by slowly cooling
the metal, the atoms can align better with one another, resulting in a
more coherent structure. Kirkpatrick, Gelatt, and Vecchi (1983), based
on some ideas from Metropolis et al. (1953), suggested that “simulated”
annealing could be used as an effective nonlinear optimization technique.
Thus, the Tiebout model shows how different institutions (here, public
choice mechanisms) can become natural annealing devices that ultimately
result in a decentralized complex adaptive social system seeking out
global social optima.

By pursuing the more elaborate computational model, we achieved a
number of useful ends. First, we were able to investigate some important
new questions, such as the impact of citizen heterogeneity, multiple
towns, and differing choice mechanisms on the ability of a system to
achieve high social welfare. Second, the more elaborate model provided
some new insights into how such systems behave, the most important
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being the idea that well-structured noise can jolt a system out of inferior
equilibria and lead it toward superior ones, and that choice mechanisms
can be designed to introduce such noise in a decentralized way. This
intuition is contrary to our usual way of thinking about such problems.
Noise is usually considered to be a disruptive force in social systems,
resulting in perturbations away from desirable equilibria rather than a
means by which to attain them.

The complex-systems approach also allows us to explore the system’s
robustness. The system autonomously responds to all kinds of changes.
We can randomly change the preference profiles for some of the citizens,
introduce or remove issues, and so on. In each case, the system will
adapt to these changes by presenting new platforms and inducing new
migrations. Depending on the rate of change, we may see the system
slowly moving through a sequence of equilibria or find ourselves with a
world constantly in flux.

Although we have focused our discussion on a political system allo-
cating public goods, the basic ideas embodied in the model are much
broader. Decentralized sorting arises across a variety of domains. For
example, workers seek jobs, traders match with trading partners, individ-
uals form social groups and clubs, and industries sort out standards and
geographic locations. All of these scenarios could be cast as decentralized
sorting problems similar to the one just discussed. Moreover, we could
use the ideas developed here to formulate new kinds of decentralized
sorting algorithms that could be used to, say, sort computer users across
resources (like servers) or on-line communities (like bulletin boards or
tagging).

The Tiebout world we have explored is a nice example of a much
broader quest. There is nothing that is unique about the Tiebout world
in terms of its complexity. Like most social systems, it displays some
dynamics, heterogeneity, and agent interactions that, even in vastly
simplified models, can easily introduce complexity. Even a little bit
of complexity implies that the conventional tools we often employ to
investigate the world will be limited in their ability to yield insights and
prescriptions. We are not claiming that these more conventional tools
are useless; indeed, they are an important complement in any quest
to understand the world.5 The computational approach pursued here
provided a number of new directions and insights that both enhanced,
and was enhanced by, more conventional techniques.

5In the example presented, the investigation of the system first began with the more
elaborate computational model. Based on that experience, we were able to develop the
thought experiment with which we opened this section.
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2.4 New Directions

The notion that real social systems often result in complex worlds is
nothing new. More than two hundred years ago Adam Smith described
a world where the self-interested social behavior of butchers, brewers,
bakers, and the like resulted in the emergence of a well-defined order.
While social science has been able to develop tools that can help us
decipher some parts of this system, we have yet to understand fully
the inner workings of the world around us. Unfortunately, we are at
the mercy of a world characterized by change and connections, and thus
our ability to make sense of our world is often undermined by the same
characteristics that make it so fascinating and important.

The application of computational models to the understanding of
complex adaptive social systems opens up new frontiers for exploration.
The usual bounds imposed by our typical tools, such as a need to keep
the entire model mathematically tractable, are easily surmounted using
computational modeling, and we can let our imagination and interests
drive our work rather than our traditional tools. Computational models
allow us to consider rich environments with greater fidelity than existing
techniques permit, ultimately enlarging the set of questions that we can
productively explore. They allow us to keep a broad perspective on the
multiple, interconnecting factors that are needed to understand social life
fully. Finally, they give us a way to grow worlds from the ground up and,
in so doing, provide a viable means by which to explore the origins of
social worlds.

As we move into new territory, new insights begin to spill forth.
Sometimes these insights are strong enough to stand on their own; at
other times, they provide enough of a purchase on the problem that we
can employ time-tested older techniques to help us verify and illuminate
the newly acquired insights. On occasion, of course, computational
models leave us with a jumbled mess that may be of no help whatsoever,
though, with apologies to Tennyson, ’tis better to have explored and lost
than never to have explored at all.

Social science has failed to answer, or simply ignored, some important
questions. Sometimes important questions fall through the cracks, either
because they are considered to be in the domain of other fields (which
may or may not be true) or because they lie on the boundaries between
two fields and subsequently get lost in both. More often than not, though,
questions are just too hard and therefore either get ignored or (via
some convoluted reasoning) are considered unimportant. The difficulty
of answering any particular scientific question is often tied to the tools
we have at hand. A given set of tools quickly sorts problems into those
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we could possibly answer and those we perceive as too difficult to ever
sort out. As tools change, so does the set of available questions.

Throughout this book, we pursue the exploration of complex systems
using a variety of tools. We often emphasize the use of computational
models as a primary means for exploring these worlds for a number
of reasons. First, such tools are naturally suited to these problems, as
they easily embrace systems characterized by dynamics, heterogeneity,
and interacting components. Second, these tools are relatively new to the
practice of social science, so we take this as an opportunity to help clarify
their nature, to avoid misunderstandings, and generally to advance their
use. Finally, given various trends in terms of the speed and ease of use
of computation and diminishing returns with other tools, we feel that
computation will become a predominant means by which to explore the
world, and ultimately it will become a hallmark of twenty-first-century
science.

2.5 Complex Social Worlds Redux

We see complicated social worlds all around us. That being said, is
there something more to this complication? In traditional social science,
the usual proposition is that by reducing complicated systems to their
constituent parts, and fully understanding each part, we will then be
able to understand the world. While it sounds obvious, is this really
correct? Is it the case that understanding the parts of the world will
give us insight into the whole? If parts are really independent from
one another, then even when we aggregate them we should be able to
predict and understand such “complicated” systems. As the parts begin
to connect with one another and interact more, however, the scientific
underpinnings of this approach begin to fail, and we move from the realm
of complication to complexity, and reduction no longer gives us insight
into construction.

2.5.1 Questioning Complexity

Thus, a very basic question we must consider is how complex, versus
complicated, are social worlds. We suspect that the types of connections
and interactions inherent in social agents often result in a complex
system. Agents in social systems typically interact in highly nonlinear
ways. Of course, there are examples, such as when people call one
another during the course of a normal day, where agent behavior aggre-
gates in ways that are easily described via simply statistical processes.
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Nonetheless, a lot of social behavior, especially with adaptive agents,
generates much more complex patterns of interaction. Sometimes this
is an inevitable feature of the nature of social agents as they actively
seek connections with one another and alter their behavior in ways that
imply couplings among previously disparate parts of the system. Other
times, this is a consequence of the goal-oriented behavior of social agents.
Like bees regulating the temperature of the hive, we turn away from
crowded restaurants and highways, smoothing demand. We exploit the
profit opportunities arising from patterns generated by a stock market
and, in so doing, dissipate their very existence. Like bees defending the
hive, we respond to signals in the media and market, creating booms,
busts, and fads.

If social worlds are truly complex, then we might need to recast our
various attempts at understanding, predicting, and manipulating their
behavior. In some cases, this recasting may require a radical revision of
the various approaches that we traditionally employ to meet these ends.
At the very least, we need to find ways to separate easily complex systems
from merely complicated ones. Can simple tests determine a system’s
complexity? We would like to understand what features of a system move
it from simple to complex or vice versa. If we ultimately want to control
such systems, we either need to eliminate such forces or embrace them by
productively shaping the complexity of a system to achieve our desired
ends.

Another important question is how robust are social systems. Take a
typical organization, whether it be a local bar or a multinational corpo-
ration. More often than not, the essential culture of that organization
retains a remarkable amount of consistency over long periods of time,
even though the underlying cast of characters is constantly changing and
new outside forces are continually introduced. We see a similar effect
in the human body: typical cells are replaced on scales of months, yet
individuals retain a very consistent and coherent form across decades.
Despite a wide variety of both internal and external forces, somehow
the decentralized system controlling the trillions of ever changing cells in
your body allows you to be easily recognized by someone you have not
seen in twenty years. What is it that allows these systems to sustain such
productive, aggregate patterns through so much change?

Our modeling of social agents tends toward extremes: we either
consider worlds composed of remarkably prescient and skilled agents
or worlds populated by morons. Yet, we know that real agents exist
somewhere in between these two extremes. How can we best explore
this middle ground? A key issue in exploring this new territory is figuring
out the commonalities among adaptive agents. While it is easy to specify
behavior at the extremes, as we move into the middle ground, we are
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suddenly surrounded by a vast zoo of curious adaptive creatures. If we
are stuck having to study every creature individually, it will be difficult
to make much progress, so our underlying hope is that we can find some
way to distill this marvelous collection of behaviors down to just a few
prototypical ones. Once this is done, we can begin to make progress on
a science of adaptive behaviors.

We know that adaptive agents alter the world in which they live. What
we do not know is how much agent sophistication is required to do so
effectively and what other conditions are necessary for this to happen.
In general, the link between agent sophistication and system outcome
is poorly understood. Theoretical work in economics suggests that
optimizing agents out for their own benefit can, without intention, lead
a market system toward efficiency under the right conditions. Moreover,
experimental and computational work suggests that such outcomes are
possible even with nonoptimizing agents. Ultimately, it would be nice
to have a full characterization of the interplay between adaptation and
optimality in social systems.

Another realm where we have a limited understanding is the role
of heterogeneity in systems. We know that in, say, ecological systems
homogeneity can be problematic. For example, using a few genetic lines
of corn maximizes short-term output but subjects the entire crop to a high
risk of destruction if an appropriate disease vector arises. Homogeneity in
social systems may have similar effects. A homogeneous group of agents
in, say, a market might result in a well-functioning institution most of
the time, but leave the possibility that these behaviors could synchronize
in such a way that on occasion the market will crash. By introducing an
ecology of heterogeneous traders, such fluctuations might be mitigated.
Perhaps heterogeneity is an important means by which to improve the
robustness of systems. If so, does this work via complexifying the system
or via some other mechanism?

The idea of social niche construction is also important. Agents, by
their activities, can often alter the world they inhabit and, by so doing,
form new niches. For example, the development of membranes early
in the history of life on Earth allowed various biological components
to bind together and isolate themselves from the external world. This
fundamentally altered their local environment creating new opportunities
for interacting with the world. Similarly, the formation of merchant
guilds, corporations, and political organizations fundamentally altered
both the internal world faced by agents and the external world in which
these new entities operated. We would like to know when and how agents
construct such niches.

The role of control on social worlds is also of interest. The ability to
direct the global behavior of a system via local control is perhaps one
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of the most impressive, yet mysterious, features of many social systems.
In the natural world, tens of thousands of swarm-raiding army ants
can form cohesive fronts fifty feet across and six feet deep that can
sweep through the forest for prey. This entire operation is controlled via
locally deposited chemical signals. At a grander scale, a vast decentralized
systems of human markets of all types orchestrate the activities of
billions of individuals across the span of continents and centuries. Fully
understanding how such decentralized systems can so effectively organize
global behavior is an enduring mystery of social science. We do have
some hints about how this can happen. For example, adding noise to
the system (as we saw in our Tiebout model) may actually enhance
the ability of a system to find superior outcomes. We also know that
some simple heuristics that arise in some contexts, such as the notion
that in a market new offers must better existing ones, result in powerful
driving forces that enhance the ability of the system to form useful global
patterns.

Every social agent receives information about the world, processes it,
and acts. For example, in our Tiebout model, the behavior of the citizens
was very straightforward (get information about the offerings of the
various towns, process this via your preferences, and act by moving to
your favorite town), while that of each town was a bit more elaborate
(get information about the preferences of the citizens across the issues,
process this via either exact or adaptive mechanisms to develop a new
platform, and act by implementing this platform).

Traditional economic modeling tends to have a fairly narrow view
of the issues that arise in acquiring information, processing it, and
acting. In these models, agents tend to have access to all available
information, process it with good fidelity and exacting logic directed
toward optimization, and act accordingly. Where traditional economics
gains its power is that these restrictions make for relatively easily
modeling across a broad spectrum of social activity. Notwithstanding
the apparent success of this approach in some domains, one wonders
whether such a restricted view of these three elements is appropriate.
While clearly these restrictions give us leverage from which to generate
insights across a variety of social realms, we also know that in many
cases the core tenets driving the approach are misplaced (though it is
still an open issue whether this matters in the end). For example, the
recent wave of work in behavioral economics is based on the notion that
the processing of information by humans may take place in ways that
dramatically diverge from the traditional view.

Much of the work we discuss throughout this book relaxes the
traditional assumptions about information acquisition, processing, and
acting. We want to consider models in which information is selectively
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acquired across restricted channels of communication. We want to look
at agents that process information via adaptive mechanisms or restricted
rules rather than exacting logic. We want to explore models in which
actions are often limited and localized. How do all of these factors
embody social complexity and what does this mean for the practice of
social science?
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P A R T II

Preliminaries

The next two chapters are devoted to some more general issues in com-
plex adaptive social systems. The first covers broader issues surrounding
scientific modeling. Throughout this book we explore various modeling
techniques, and thus having a solid foundation from which to consider
such work is a necessity. Unfortunately, such discussions tend to get
relegated to the dark arts if they are discussed at all, and we feel that
a more explicit treatment of this topic is needed. The second chapter
discusses emergence in complex systems. While emergence appears to be
a key hallmark of complex systems, explicit discussions are hard to find.

Although the next two chapters provide some nice foundational
concepts for readers, the ordering is a bit arbitrary as the full context
for these discussions is not developed until later in the book. Thus, some
readers may prefer to skip ahead at this point and come back to these
chapters at a later time.

33
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C H A P T E R 3

Modeling

For every complex problem, there is a solution that is simple,
neat and wrong.

—H. L. Mencken

Things should be made as simple as possible—but no simpler.
—Albert Einstein

Nothing is built on stone; all is built in sand. But we must
build as if the sand were stone.

—Jorge Luis Borges

We begin with a discussion of the basics of scientific modeling. This
topic is so fundamental to the scientific enterprise that it is often assumed
to be known by, rather than explicitly taught to, students (with the
exception of a high school lecture or two on the “scientific method”).
For whatever reasons, learning about modeling is a lot like learning about
sex: despite its importance, most people do not want to discuss it, and no
matter how much you read about it, it just doesn’t seem the same when
you actually get around to doing it.

All modeling requires the faith that, as Borges expresses it, we can
occasionally turn the sand of the real world into stone. Effective models
require a real world that has enough structure so that some of the
details can be ignored. This implies the existence of solid and stable
building blocks that encapsulate key parts of the real system’s behavior.
Such building blocks provide enough separation from details to allow
modeling to proceed. For example, Mendel was able to develop his
key ideas about heredity without knowing anything about DNA, and
economists have been able to generate useful theories of individual and
firm behavior without having to delve deeply into the human mind or
the organization of the firm. This ability to ignore is a crucial component
of scientific progress as it allows us, just like the parent trying to stop
the endless regress of a three-year-old’s “why” questions, to say “just
because.” Of course, the art of good science is knowing when to say
“just because,” for if we are able to invoke that incantation at the
right moment, the sand underlying our model’s foundation will turn
to stone.
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Systems, whether scientific models or real-world entities, that do
not have sufficient underlying structure are very unstable, difficult to
understand, and hard to control. Imagine a world in which every detail
mattered—even a slight alteration in the world would result in a cascade
of changes that resonate throughout all levels of the system. For complex
systems (either real or artificial) to be built and maintained, there needs
to be some isolation of the component parts, lest “for want of a nail” we
lose the kingdom.

The basics of modeling transcend any particular set of tools we may
use to create the model. Tools do, of course, direct the modeling as they
provide the scaffolding upon which the model must be built. Nonetheless,
whether we use the Gedanken experiments of Mach and Einstein or the
correspondences of Arrow and Debreu, our judgments about the quality
of the model can be decoupled from the particular set of tools used to
create it. The remainder of this chapter discusses some fundamentals of
modeling, using both an intuitive illustration (road maps) and a more
formal derivation (homomorphisms).

3.1 Models as Maps

One of the best models that we encounter in our daily experience is the
road map. Maps allow an enormous range of people to easily acquire,
and productively use, information about a complex reality. We can use
maps not only for making accurate predictions about how to manipulate
the world (for example, to get from point A to B), but also to answer a
variety of questions that were not part of the map maker’s original inten-
tion (for example, to uncover useful patterns of population or geology).

Maps are valuable for a variety of reasons. One reason is that they
leave out a lot of unnecessary details. In so doing, they minimize
distractions and allow us to focus on the questions that we most care
about. Good maps are those that have just barely enough details (see
figure 3.1). Consider placing all of the possible details of the world (for
example, major highways, secondary highways, roadside restaurants, gas
stations, cities, elevation contours, waterways, street addresses, economic
activity, people, and so on) each on a separate transparency. We could
then create custom maps by overlaying various selections from this vast
set of details. For a long-distance truck driver, the most useful map might
consist of the sheets with major cities, highways, roadside restaurants,
and diesel stations. A hiker would want overlays containing elevation
contours, waterways, and foot paths.

As we successively add more overlays, the map gains more and more
detail at a cost of more distractions and difficulty disentangling useful
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Figure 3.1. Maps as models. A topographic map (right) takes the detailed
reality of an aerial photograph (left) and distills it down to a few key features
that match the essential needs of the user. Scientific models must achieve a
similar end.

connections. Each time we add an unnecessary overlay, the map loses
some of its value. Eventually, the map becomes so complex that it is easier
to abandon the stack of overlays and just use the real world itself.1 Good
modeling requires that we have just enough of the “right” transparencies
in the map. Of course, the right transparencies depend on the needs of a
particular user.

Another desirable feature of a map is that it is easily understandable
to others. Maps must communicate their ideas across people and time.
To accomplish this task effectively, they not only need to be simple, but
users must have a common understanding. Sometimes this understanding
is communicated explicitly by, say, the use of legends (which hopefully
incorporate some intuitive design features, such as having rest stops
being marked by picnic table icons). Often, we also require an implicit
understanding on the part of the user. In the case of a map, users are
assumed to know that some of the compromises made to create the
map require counterintuitive thinking—for example, the shortest route
between two points may not be a straight line. Misunderstandings about
the implicit knowledge embodied in a map often lead to serious mistakes.

Good maps not only allow us to predict key features of the world,
but they also enable us to discover new phenomena. If we look at a
map of the world (or, better yet, a globe), theories of continental drift

1“The Cartographers Guilds struck a Map of the Empire whose size was that of the
Empire, and which coincided point for point with it. The following Generations, who were
not so fond of the Study of Cartography as their Forebears had been, saw that that vast
Map was Useless, and not without some Pitilessness was it, that they delivered it up to
the Inclemencies of Sun and Winters.” Jorge Luis Borges and Adolfo Bioy Casares, On
Exactitude in Science (1946), English translation from Jorge L. Borges, A Universal History
of Infamy (London: Penguin Books, 1975).
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Figure 3.2. A formal model of models. Dotted lines indicate the equivalence
class mappings.

seem obvious.2 Plotting earthquake locations can be used to find hidden
fault systems. Maps of navigable water systems or resource locations may
suggest likely population centers. Snow’s 1855 map of cholera cases in
the Soho district of London revealed both the mode of transmission and
source (a pump on Broad Street) of the disease. None of these phenomena
were anticipated by the original map makers who were solely focused on
accurately representing the real world in a compact form; yet all of them
(and many more) naturally arise out of the chosen representation.

3.2 A More Formal Approach to Modeling

Here we present a more formal approach to the ideas underlying
modeling—a model of modeling. Our discussion relies on the mental
modeling ideas developed by Holland et al. (1986) for creating artificial
learning systems. We focus on trying to model a world that varies over
discrete time steps (though one could obviously apply these ideas to other
types of systems). The basic outline of the underlying ideas are presented
in figure 3.2. In the top half of the figure, we represent the real world that
we are interested in modeling; in the lower half, we depict our model.

We assume that the real world consists of various states, S, and a
transition function F (S) that maps a given state at time t into a new state

2Though it wasn’t until around 1800 that Humboldt initiated this line of thinking, and
it still took another hundred years before the full hypothesis was introduced.
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at time t + 1. The function F (S) is unknown to the modeler, and while
the modeler would like to uncover F (S), this will typically be impossible
given the dimensionality of the state space and potential complexity of
F (S). For example, consider the issue of forecasting the weather. The
actual state space of this system, S, is enormous consisting of the position
and characteristics of all of the relevant atoms. The laws of physics,
F (S), tell us how the states of these atoms change from one moment
to the next.

As an alternative, the modeler can reduce the size of the state space
and seek a simpler transition function. To reduce the size of the state
space, the modeler generates equivalence classes: maps from a subset
of the real-world states, S, to a model state, s. Here we designate the
equivalence class map as E(S). Based on these new model states, the quest
of the scientist is to find a useful transition function, f (s), for the model.
Continuing our weather example, we might consider using an equiv-
alence class, E(S), that maps configurations of atoms into measures
of barometric pressure and humidity. We would then need to find a
function, f (s), that can predict how patterns of pressure and humidity
are transformed over time. For example, it may be the case that when
low- and high-pressure areas abut, the humidity increases and the two
pressures begin to equilibrate.

The success of a particular model is tied to its ability to capture the
behavior of the real world. Suppose we begin with real-world state S′.
The model transforms this state into s ′ = E(S′) and then predicts that
we will find ourselves in state f (s ′) in the next time period. In the real
world, state S′ becomes state F (S′) in the next time period. Thus, the
model “coincides” with the real world if f (E(S′)) = E(F (S′)), that is,
if we end up at the same model state regardless of whether we (1) first
transform the initial real-world state into its equivalence class and then
run it through the model’s transition function, or (2) first allow the real-
world state to be transitioned to its next state and then map this state,
via the equivalence class, to the model. The requirement that the maps
between the model and the real world must be commutative in this way
is known as a homomorphism. Thus, the goal of modeling under this
view is to find a set of equivalence classes and a transition function that
results in a useful homomorphism.

Consider the earlier problem of modeling the weather. Rather than
worrying about the position and characteristics of every atom in the
atmosphere (an impossible task to be sure), we first use equivalence
classes to collapse this space down to, say, measures of pressure and
humidity. We next develop notions of how patterns of pressure
and humidity are transformed over time. This model has a homomor-
phism if on any given day we can predict the pressure and humidity in
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the next time period knowing the pressure and humidity now and that
prediction matches the actual pressure and humidity observed.

A model requires choices of both the equivalence classes and the
transition function, and the art of modeling lies in judicious choices of
both. For any given real-world problem, there are likely to be multiple
equivalence mappings (and associated transition functions) that will
result in homomorphisms. The value of any particular set of choices
depends on the current needs of the modeler. Moreover, the difficulty
of discovering the model’s transition function will be closely tied to the
chosen equivalence mapping, and thus modelers must make trade-offs
between these two elements. Choosing an overly broad set of equivalence
classes simplifies the task of finding an appropriate transition function,
f (s), leading to a homomorphism, but at the cost of lowering the model’s
resolution and value. In the limit, consider the useless but homomorphic
model in which all possible states of the real world are mapped into a
single equivalence class and the model’s transition function is the identity.

Finding useful homomorphisms is often difficult in practice, and
modelers may be willing to forgo perfect homomorphism. Even models
in which a few states of the world are “exceptional” may still have
a lot of value. Oftentimes the exceptions have little consequence for
the main applications of the model. Furthermore, if the number of
exceptions is small, the old model can be preserved by refining its
equivalence classes and transition function so that every exception is
handled individually. If, however, the number of exceptions becomes
too large, the model must undergo a more radical change. Such changes
range from simple modifications of the underlying features of the model
(with, perhaps, a corresponding loss of resolution) to a much more
dramatic reframing entailing an entirely new set of equivalence classes
and transition function.

This continual chasing of the “ideal” model results in a Schumpeterian
cycle of scientific creative destruction. Modelers attempt to reduce the
world to a fundamental set of elements (equivalence classes) and laws
(transition functions), and on this basis they hope to better understand
and predict key aspects of the world. The ever present quest for refining
old, and discovering new, ways to represent the world drives the process
of scientific creative destruction.

3.3 Modeling Complex Systems

The proceding principles of modeling are key to developing a scientific
understanding of a system, whether it is simple or complex. One view
of modeling complex systems, which (at least implicitly) is held by many
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Figure 3.3. Modeling complex systems. The behavior of the entities at one level
in the world (upper panel) might result in new entities emerging (via function X)
that take on new types of behaviors that require a new class of models (lower
panel).

scientists, is the reductionist hypothesis. This hypothesis suggests that, if
we can just get the right simplifications in the model, we will understand
everything—if true, then the world around us, including the social world,
is “just particle physics.” That is, once we understand the basics of
particle physics, we can simply apply this knowledge to unravel whatever
higher-level systems we may wish to reveal (moving, roughly in order,
through physics, chemistry, biology, psychology, sociology, economics,
and so on), and knowledge is simply “applied” physics. Dennett (1995)
refers to this idea as “greedy reductionism.” Of course, as pointed out by
Anderson (1972), the fallacy here is that the reductionist hypothesis does
not imply a “constructionist” one. Even if we know the fundamentals
of a particular system, we may not be able to use that knowledge
to reconstruct higher-level systems. It may be, as Anderson says, that
“the whole becomes not only more than but very different from the sum
of its parts.”

The potential implications of this “more is different” hypothesis for
modeling complex systems are shown in figure 3.3. The upper part of
the panel is identical to that of figure 3.2, and it shows a real system
and its associated model. The lower part of the panel represents a higher-
level system. Each element of this new system is derived from interactions
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among the entities in the low-level system. For example, at some point
the weather patterns of barometric pressure and humidity discussed
previously might result in a completely new entity being formed—like a
hurricane—that behaves in a very different way. In the social sciences, the
two systems involved might be psychology and economics. Here, individ-
ual choice behavior in the low-level psychological system could aggregate
into a very different homo economicus or firm entity in the higher-
level economic system (via the unknown transformation function, X).
The new entities that are formed by the lower-level ones interact in a
very different world, governed by a new transition function, G. As in the
lower-level system, one can begin to model this new system as shown
in the bottom part of the figure. However, note that knowledge of the
old system (say, knowing F or the details of the old model) does not
directly help us model the new, higher-level system. This latter view
of the world coincides with the idea of “hierarchical reductionism” put
forth by Dawkins (1976).

If more is different, then there is plenty of “fundamental” work at
all levels of the scientific enterprise. Each time we move to a new
level, we are confronted with a new world that requires new models.
Moreover, creating a theory about how these new levels arise from
existing ones, namely understanding the function X, becomes important.
We would like to be able to develop a theory that helps us understand
how states of the world (composed of lower-level entities and interaction
rules) are transformed into higher-level entities. Some initial work on
this topic has been done with cellular automaton models, where it has
been shown that under some conditions a variety of seemingly different
interaction rules imply only a few distinct types of high-level behavior
(Wolfram, 2002).

3.4 Modeling Modeling

Throughout this book we explore a variety of systems using methodolo-
gies ranging from computation to mathematics to thought experiments.
Regardless of the system or methodology, our goal is to employ high-
quality models. Thus, we apply the same standards of simplicity and
elegance to our computational models that we do to our mathematical
ones. Models need to be judged by what they eliminate as much as by
what they include—like stone carving, the art is in removing what you do
not need. Even though a computational model may require thousands of
lines of code, if done well it can still embody the simplicity and elegance
that is demonstrated in a mathematical model existing in only a few
equations.
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Having an explicit awareness of the issues surrounding quality
modeling is important if we want to work on the frontiers of science.
This awareness disciplines our efforts as we explore new problems and
employ novel techniques. Creating a model is much like trying to solve
a brain teaser. Finding such solutions is often an extremely difficult task
involving a combination of theory, practice, and a bit of art. Yet, once
discovered, the answer has strong intuitive appeal and appears all too
obvious.
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On Emergence

He intends only his own gain, and he is in this, as in many
other cases, led by an invisible hand to promote an end which
was no part of his intention.

—Adam Smith, Wealth of Nations

Any sufficiently advanced technology is indistinguishable
from magic.

—Arthur C. Clarke, Profiles of the Future

Much of the focus of complex systems is on how systems of interact-
ing agents can lead to emergent phenomena. Unfortunately, emergence
is one of those complex systems ideas that exists in a well-trodden,
but relatively untracked, bog of discussion. The usual notion put forth
underlying emergence is that individual, localized behavior aggregates
into global behavior that is, in some sense, disconnected from its origins.
Such a disconnection implies that, within limits, the details of the local
behavior do not matter to the aggregate outcome. Clearly such notions
are important when considering the decentralized systems that are key to
the study of complex systems. Here we discuss emergence from both an
intuitive and a theoretical perspective.

The notion of emergence has deep intuitive appeal. Consider for the
moment standing up close to a pixelated picture (see figure 4.1).1 While
each individual pixel can be easily understood in terms of its shape, color,
hue, and other properties, it is typically impossible to figure out the entire
image by simply scanning across the pixels at close range. As the observer
moves back, there is some point at which the overall image begins to
resolve, and the pixels become indistinguishable. Once the image has
resolved, we can typically make many possible alterations to individual
pixels and still not impact the overall image. Indeed, depending on the
image, certain types of global pixel properties, such as color, may not
even be be needed to have a good sense of the final image.

We may see emergence at many levels. For example, instead of
having each pixel composed of a single solid color, we could replace it
with a tiny picture whose overall properties can approximate the key

1For the more romantic among you, assume a stained glass window.
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Figure 4.1. Emergence from a mosaic. While the properties of each tile are easy
to understand at close range, the true nature of the full image is impossible to
comprehend from such information. It is only when you view the mosaic from
far away that emergence allows the entire image to become viable.

visual attributes of the previous pixel.2 Of course, each of these tiny
photographs, each emerging from its own set of pixels, could stand by
itself. Thus, there is the possibility of multiple layers of emergence, where
pictures become pixels that become pictures that become pixels and so
on. This may lead us to a “Horton-Hears-A-Who” theory of the universe,
in which the world is composed of stacked layers of emergence.

The notion of emergence at many levels is an important one, as each
level of emergence can serve as a convenient point at which to dissect the
larger system and attempt to understand some of its secrets. Indeed, the
boundaries of modern science rely on this property—for example, physics
resolves into chemistry, which resolves into biology, which resolves into
psychology, which resolves into economics, and so on. Each new science
is able to exploit the emergence that is attained by the previous level.

While this metaphor of emergence is very appealing, it leaves open
the question of how it should fit into scientific discourse. Part of the
innate appeal of emergence is the surprise it engenders on the part of
the observer. Many of our most profound experiences of emergence
come from those systems in which the local behavior seems so entirely
disconnected from the resulting aggregate as to have arisen by magic,
echoing Clarke’s observation about advanced technology. Examples of
such dramatic disconnects include photomosaic pictures, the order and
persistence of beehives and foraging ant colonies through simple sets of
localized signals, and the stability of a market price generated by the
often chaotic and heterogeneous efforts of traders.

2The technique of photomosaic pictures exploits this idea.
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Alas, surprise and ignorance are closely related. It could be that
emergent behavior is simply reflective of scientific ignorance rather than
some deeper underlying phenomenon. What may start out as a mystical
emergent phenomenon, such as planetary motion prior to Kepler, may
turn out to be something rather simple—in the case of Kepler, just an
ellipse. If all such scientific conundrums can be easily resolved, then
perhaps it is true that all of our world is just physics. Nonetheless,
whether our fascination with emergent phenomena is driven by ignorance
or a more profound scientific mystery matters little. Profound scientific
mysteries often get resolved in such a way that our prior ignorance
becomes apparent, yet it is the ignorance that drives the quest for
understanding.

4.1 A Theory of Emergence

To move forward on the scientific exploration of emergence, it is useful
to consider what types of theoretical ideas are possible in this area. As
we have discussed, emergence is a phenomenon whereby well-formulated
aggregate behavior arises from localized, individual behavior. Moreover,
such aggregate patterns should be immune to reasonable variations in the
individual behavior. Ideally, what we would like to develop are theorems
about such phenomena, and, fortunately, at least one such theorem has
existed since the early 1700s.

The theorem, the Law of Large Numbers (and its various offshoots,
including the Central Limit Theorem), was developed by statisticians
over the past few hundred years. It is of interest because it provides some
relatively general conditions under which a certain type of aggregate
behavior can emerge from the stochastic, microlevel actions of individual
agents. Suppose that each individual agent’s behavior is summarized
by a random variable, X. Furthermore, assume that these variables are
mutually independent, have a common distribution, and a mean equal
to µ. According to the Law of Large Numbers, the probability that the
mean will differ from µ by less than some arbitrary amount tends to one
as we increase the number of agents in the system.

Thus, in such systems there is a stable, aggregate property (here
the expected value of the common distribution) that emerges from
aggregating the activities of the agents. Moreover, this aggregate property
is robust to many underlying assumptions about the agents. In the
foregoing case of the Law of Large Numbers, the only restriction is
that the common distribution has mean µ; other than that, we can vary
any of its other characteristics and still maintain the identical aggregate
behavior.
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Figure 4.2. Central Limit Theorem. Notwithstanding the form of the initial
distribution underlying the random process, the distribution of the mean of the
variables generated by this process converges to a Normal distribution as we
take larger and larger samples. In the top panel we start with a Uniform
distribution, while in the bottom one we begin with a V-shaped distribution.
In either case, a Normal distribution “emerges” as the sample size increases.
Thus, the macrobehavior resulting from the aggregation of a remarkably
diverse set of potential microbehaviors results in a very robust and predictable
outcome—a hallmark of emergence.

The Central Limit Theorem provides another example of such a result
(see figure 4.2). If we add the assumption that the variance of the
common distribution is finite, then the distribution of the average (our
aggregate property) will converge to a well-known “normal” form. The
remarkable implication of this theorem is that, for an amazing variety of
underlying agent behaviors, the global behavior that emerges is described
by a simply specified, common form.

As Coates (1956) points out, without these laws, much of the behavior
of the social worlds we live in would fall apart. Various activities, ranging
from driving on the highway to enjoying the outdoors, would either be
excessively crowded or notably desolate at the strangest times, stores and
restaurants would run out of the oddest things, life insurance companies
and telephone systems would fail, and so on.

The emergence theorems provide useful descriptions of a certain type
of complexity that Weaver (1958), in a deeply prescient article, called
disorganized complexity. The Law of Large Numbers works because as
we add more and more independent agents to the world, the vagaries
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of the stochastic elements, quite literally, average out. With only a
few agents, these stochastic elements make it impossible to predict
with any certainty the aggregate behavior because individual variation
overwhelms any potential predictability, but as we increase the number
of agents involved in the world, individual variations begin to cancel one
another out, and systemwide predictions become possible.

The key feature of disorganized complexity is that the interactions
of the local entities tend to smooth each other out. In the case of the
Law of Large Numbers, an unusually high value for one random value
is compensated for by an unusually low value of another. Thus, while
it is difficult to predict the point at which, say, a particular rain drop
meandering down a roof will fall into the gutter, it is easy to predict
the activity at any point of the gutter during a rainstorm, as the various
meanderings of the drops tend to disrupt one another sufficiently as they
flow down the roof so as to spread out the water in a predictable way.
Similarly, while predicting the motion of a planet surrounded by a few
neighbors is difficult, it is easy to calculate its motion when it is among a
sea of other planets, as the various gravitational forces that come into
play begin to cancel one another out, and soon only the mean force
becomes important. Other phenomena, ranging from population genetics
to physical properties like temperature and pressure, also fall within the
realm of disorganized complexity.

Thus, in cases of disorganized complexity, it should be easy to derive
fairly precise emergence theorems based on fundamental concepts that
are centuries old. Unfortunately, disorganized complexity accounts for
only one part of our world.

4.2 Beyond Disorganized Complexity

Consider a picture of a face that is composed of black and white pixels. In
such a picture, the pixels have relationships to one another that are quite
important if we are to recognize the face. Some changes to the picture
will not cause us to “lose” the face; for example, having a few of the
pixels randomly change color, or even allowing some neighboring pixels
to switch places, will preserve the “face.” Even some radical changes may
not impact our ability to perceive the face, such as altering the color of
related pixels (think Warhol) or just showing the important edges of the
photograph (see figure 4.3). Moreover, if we are careful, we may be able
to “capture” the image with just a few carefully drawn lines, as is done
in caricature drawings.

Nonetheless, while we can make some slight changes to the pixels
(or even some carefully designed radical changes) and still maintain the
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Figure 4.3. Beyond disorganized complexity. The essence of the photograph
remains robust to a variety of radical changes. All of these transformations keep
intact the relationship of key parts of the original photograph (left).

image, doing anything more is likely to destroy the image. As we start to
impact more and more pixels (by either randomly altering their colors or
allowing neighbors to switch places), we quickly descend into the realm
of disorganized complexity. In such a world, the photograph quickly
resembles the white noise we see on the television (at least prior to
the advent of late-night infomercials) when stations end their broadcast
day. While it would be possible to construct the usual disorganized-
complexity emergence theorems about, say, the average tone of the
picture or the likelihood of an eyelike shape arising somewhere in
the photograph, such theorems would fail to capture the essence of
the problem of understanding how a decentralized set of pixels can
emerge into a familiar face.

Thus, disorganized complexity, while often useful, leaves out a lot
of interesting complexity-related phenomena. Disorganized-complexity
emergence theorems can be used to calculate the vanishingly small prob-
ability that a room full of apes randomly banging away at typewriters
will come up with Hamlet. Of course, a close relative of an ape did write
Hamlet, but obviously not by randomly placing words to parchment and
hoping for the best. Similarly, while disorganized-complexity theorems
can be used to predict the life-span of a human body or a beehive
composed of individual agents (cells or bees, respectively), they do not
provide any insight into how the various communication and behavioral
pathways among the individual agents are able to aggregate into these
larger-scale organizations that survive and have behaviors on scales that
are completely different than their constituent parts.

Explorations of complex systems have begun to identify the emergent
properties of interacting agents—for want of a better term, organized
complexity. We often see unanticipated statistical regularities emerging in
complex systems. These regularities go beyond the usual bounds covered
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by Central Limit Theorems and such. In chapter 9 we explore a model of
sand piles in which we randomly drop grains of sand onto a table. A pile
forms as the sand falls, and eventually grains begin to run off the edges
of the table in avalanches of various sizes. The distribution of avalanche
sizes follows a power law that implies behavior that is quite different
from that arising from a normal distribution.

Agent intention can also alter the patterns that emerge in complex
systems. In the case of the Sand Pile model, if we give the falling grains
of sand a bit of control on where they land and some desires (like
maximizing the size of the resulting avalanche), the system is no longer
governed by a power law and instead enters a bizarre periodic cycle. As
we give agents even more strategic ability, we often see elaborate dances
of strategies, with good and bad epochs, cycles, and crashes.

In systems characterized by the Central Limit Theorem, interactions
cancel one another out and result in a smooth bell curve. In complex
systems, interactions reinforce one another and result in behavior that
is very different from the norm.3 The complex phenomena that arise in
physical systems (like earthquakes, floods, and fires) and social ones (like
stock market crashes, riots, and traffic jams) are decidedly not “normal,”
nor are the patterns that emerge as we see birds flock, fish school, and
pedestrians follow sidewalks demarcated by invisible traffic lanes.

4.2.1 Feedback and Organized Complexity

When interactions are not independent, feedback can enter the system.
Feedback fundamentally alters the dynamics of a system. In a system with
negative feedback, changes get quickly absorbed and the system gains
stability. With positive feedback, changes get amplified leading to
instability.

For example, consider a world in which we have one hundred
consumers, each of whom must choose to shop at one of two identical
grocery stores. In a world ruled by the Central Limit Theorem, a con-
sumer would choose a store with probability one-half. Thus, each store
could expect to see fifty customers on average, though the actual number
that showed up would be subject to random variation. In fact, given the
underlying process just described, we know that a given store will have,
say, more than sixty customers only about 2 percent of the time.

Now, allow customers to act more purposefully and interact with one
another. Suppose that customers prefer to be in less-crowded stores. Such

3One only needs to look at the failure of Long-Term Capital Management in 1998 to
realize the practical importance of this distinction. The world in which Long-Term Capital
Management played was one governed by fat-tailed distributions, not the Central Limit
Theorem.
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an assumption introduces a feedback into the system, whereby customers
who find themselves in the crowded store begin to shop at the other
store. To avoid some odd system-level behavior, we allow only a single
customer per period to make such a decision.4 Given this assumption,
in very short order the number of shoppers in each store equilibrates
at fifty. Even if we include small external shocks to the system, for
example, two customers from different stores take a liking to one
another and begin to shop together, the system as a whole will quickly
resettle back to the stable configuration with exactly fifty people in each
store. Thus, the desire to avoid crowding by each individual induces a
negative feedback on the system, resulting in a very stable and predictable
outcome.

Agent interactions can also introduce positive feedback into the
system. Suppose the same group of one hundred people, also does
some banking each day. Imagine that each person has some chance, say
50 percent, of going to the bank and withdrawing money. The bank
has limited reserves to cover withdrawals, and thus if too many people
withdraw their money, the bank will be unable to cover the claims and
become insolvent, causing depositors to panic and demand their money.
If the bank has 60 percent reserves, then, as we saw earlier, around
2 percent of the time the bank will go insolvent, resulting in an
unfortunate “large event” and an all-out run on the bank.

In our three worlds we see very different behavior. In the first,
customers act independently and ignore one another, so the resulting
number of customers shopping at a given store is nicely approximated
by a normal distribution with a mean of fifty and standard deviation of
five. In the second, where customers avoid crowding, we get a degenerate
distribution with each store having exactly fifty customers each day.
Finally, with the potential for panic, the number of customers arriving
at the bank looks identical to the normal distribution we saw in the first
case when we have less than sixty customers, but once we hit sixty, all of
the remaining weight of the distribution shifts to the right, and we get a
fat upper tail.

The contrasts between these images are startling. The world would
be a lot easier to understand if we could restrict our attention to the
first two scenarios, that is, if agents either avoid direct interaction with
one another or interact in such a way that strong negative feedback
results in a stable equilibrium. Alas, the vast majority of social science
theory focuses on exactly these two types of outcomes. Nonetheless,
there are many canonical examples of “large events” that arise in social

4Without this, there are some dynamics where we can get large swings in the number of
customers as they overreact to crowding.
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Figure 4.4. Gliders in the Game of Life. A glider in the Game of Life is a
configuration of live cells that “moves” across the space. During each successive
time step (left to right), the set of live cells is altered based on the simple, local
rules (see text) of the game. After four time steps, the original configuration of
live cells is regenerated, only displaced down and to the right by one cell. If left
undisturbed, this structure will continue to “glide” across the space. A more
elaborate configuration of live cells, known as a glider gun, is capable of
generating such gliders.

systems, such as stock market crashes, riots, outbreaks of war and peace,
political movements, and traffic jams. These events are driven by positive
feedback, arising from perhaps externalities driven by the behavior of
others that change each individual’s costs or benefits from acting (for
example, as rioting breaks out, your chance of going to jail decreases,
and the social benefit of joining in increases) or physical constraints on
behavior (such as when the car in front of you on the highway slows
down, forcing you to slow down as well to avoid a crash).

Thinking about positive and negative feedback provides only a crude
window into the set of possibilities that can emerge in a complex social
system. Many complex systems contain both types of feedback. For
example, consider Conway’s Game of Life. In this game, the world
moves in lockstep and is arrayed on a two-dimensional grid, each cell
of which can either be dead or alive. A dead cell with exactly three live
neighbors is “born” and becomes a live cell next period; otherwise, it
remains dead. A live cell with two or three live neighbors “survives”
into the next period; otherwise, it dies (either out of “loneliness” or
“overcrowding”). Thus, in this system an intermediate amount of life
begets life (a positive feedback), while too much or too little life leads
to death (a negative feedback). Ultimately, this results in a remarkable
set of global patterns in both space and time that can emerge from this
simple set of microlevel rules. These patterns are so coherent at times
that we can ignore the underlying microlevel rules that generated them
and instead rely on the resulting global structures to predict systemwide
behavior (see, for example, figure 4.4).
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As discussed previously, we have access to some useful “emergence”
theorems for systems that display disorganized complexity. However, to
fully understand emergence, we need to go beyond these disorganized
systems with their interrelated, helter-skelter agents and begin to develop
theories for those systems that entail organized complexity. Under
organized complexity, the relationships among the agents are such that
through various feedbacks and structural contingencies, agent variations
no longer cancel one another out but, rather, become reinforcing. In such
a world, we leave the realm of the Law of Large Numbers and instead
embark down paths unknown. While we have ample evidence, both
empirical and experimental, that under organized complexity, systems
can exhibit aggregate properties that are not directly tied to agent details,
a sound theoretical foothold from which to leverage this observation is
only now being constructed.
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P A R T III

Computational Modeling

In the next two chapters we discuss the use of computational models
as a theoretical tool, in particular in the modeling of social systems.
Over the past decade or so, what was once considered the fringe has
become the frontier, and computational models have become much more
widely accepted among social scientists. Nonetheless, we feel that it is still
useful to outline some of the foundations of this approach, as accessible
discussions are hard to find in the literature.

55
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C H A P T E R 5

Computation as Theory

By the addition of such artificial Instruments and methods,
there may be, in some manner, a reparation made for the
mischiefs, and imperfection, mankind has drawn upon it self,
by negligence, and intemperance, and a wilful and
superstitious deserting the Prescripts and Rules of Nature,
whereby every man, both from a deriv’d corruption, innate
and born with him, and from his breeding and converse with
men, Is very subject to slip into all sorts of errors.

—Robert Hooke, Micrographia

The use of computers seems thus not merely convenient, but
absolutely essential for such experiments which involve
following the games or contests through a very great number
of moves or stages. I believe that the experience gained as a
result of following the behavior of such processes will have a
fundamental influence on whatever may ultimately generalize
or perhaps even replace in mathematics our present exclusive
immersion in the formal axiomatic method.

—Stanislaw Ulam, Adventures of a Mathematician

For many centuries, houses were constructed by their occupants
with perhaps the assistance of a few skilled neighbors. This vernacular
architecture led to the creation of unique homes, each reflecting the
whims of its builders. Various additions and deletions would accrue over
time as the needs of the family changed. Houses were designed with both
local materials and conditions in mind. The soundness of such structures
was dependent on both luck and the innate engineering skill of each
owner—on many occasions a house would collapse due to poor design.

With time, ideas about appropriate home design and construction
became less the province of the occupant and more of a professional
activity. Ideas like balloon framing (developed in Chicago in the 1830s)
allowed the development of sound housing through the use of stan-
dardized building materials like two-by-fours. While this new system
of building lessened the likelihood of building collapses, it also began
to constrain the design choices of architects. The various components
had to fit together in particular ways, and alterations required massive
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reworking of the fundamental elements, not to mention the scorn of the
building inspectors. Inevitably, housing design became less concerned
with meeting the needs of occupants and local conditions and more
focused on realizing structures as cheaply as possible.

The current situation in parts of the social sciences is not unlike that
of our intrepid home builders. A long history of both interesting and
disastrous vernacular has given way to standardized designs requiring
the approval of strict “building inspectors.” By using these standard
construction techniques, we have been able to build a substantial number
of safe structures. But the compromises have been great: we often
demand that our occupants fit the structures rather than our structures
fitting the occupants, and we celebrate slight alterations of existing plans
as architectural prowess. Although the best builders are able to push the
standardized components to their structural and aesthetic limits, most
of the structures we are building are destined for the most mundane
suburbia.

New computational tools offer the possibility of breaking away from
the past and forming new theoretical dreams. In architecture, such tools
have allowed structures like Gehry’s Guggenheim Museum Bilbao to
make fanciful dreams a reality. We are not advocating here a return
to the vernacular way of building—whatever charm such vernacular has
is offset by the likelihood of raising a faulty structure or creating eccentric
structures that have little utility beyond their immediate occupants.
Rather, we are suggesting that it is time to take our old components and
use them in new ways. Such an approach is not without risks, for surely
some of the new structures that we build will fall; but others will stand
and inspire.

An underlying thesis of this book is that computational modeling is a
productive theoretical enterprise. Such an idea often incites controversy.
When theoretical computation was introduced into fields like physics,
mathematics, and biology, it encountered initial resistance. With time this
resistance waned and computational methods became an accepted and
integral part of each of these fields. This assimilation process is rapidly
ongoing in fields such as economics, where editors who once asked
why would one ever want to use computation now suggest shortening
papers by removing such discussions since “the computational approach
is business as usual.”

Notwithstanding the growing acceptance of computation as a theo-
retical tool, it is still worthwhile to lay out some basic arguments for
why we should embrace this approach. As theoretical tools become more
widely accepted, their foundations tend to be rarely revisited and even
get forgotten by new generations of users. This is unfortunate, as a clear
knowledge of the foundations often enhance the resulting theory.
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Much of the discussion in this chapter compares computational models
to more traditional mathematical modeling techniques, in particular, the
neoclassical approach in economics. Our intention here is not to offer
a full critique of the traditional approach but instead to ground our
discussion on territory that may be familiar to many of our readers. To
minimize any misunderstandings at the outset, our view is that tools like
mathematics and computation are complements rather than substitutes
in the development of sound theory.

5.1 Theory versus Tools

Part of the controversy surrounding computational methods is the
result of a confusion between theory and the tools we use to develop
theory. A theory is a cohesive set of testable propositions about a
phenomenon, and it can be created by employing a variety of tools.
The set of tools varies dramatically across, and often within, any given
field. For example, economists have relied on theoretical tools that
include detailed verbal descriptions, such as Smith’s (1776) invisible
hand; mathematical analysis, like Arrow’s (1951) possibility theorem;
and thought experiments, including Hotelling’s (1929) railroad line.

Currently, the predominant tool in economic theorizing is the develop-
ment of mathematical models derived from a set of first principles. The
axioms used in such derivations often include assumptions about both
the abilities and motives of the underlying agents. Linking these axioms
with the notion that social systems tend toward equilibrium states, we
can use these models to make predictions. Although there are many
reasons to favor such a tool for theory creation, there is no a priori
reason to think that this tool should be superior to alternative tools in all
(or even most) situations. In fact, economists are often willing to relax
the approach when necessary. For example, the theory of supply and
demand, probably one of most useful applications of economic thinking,
does not currently have a coherent, first-principle basis.

The neoclassical approach has provided a unified and tractable mod-
eling framework from which to attack a variety of interesting social
phenomena. These tools provide both a ready set of simplifications
for understanding the world and a process by which the implications
of these simplifications can be derived in a consistent way. Thus, we
can propose a novel problem to a group of neoclassical theorists, send
them all off separately to work on the problem, and find, when they
reconvene, that their various solutions share a remarkable similarity. Of
course, consensus does not necessarily imply correctness. Nonetheless,
the possession of a tool that simplifies the development and refinement
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of theories concerning complex questions is an important step forward
in developing a science of society, and it remains one of the most
distinguishing hallmarks of economics versus many of its sister social
sciences.

Part of the motivation for relying on the neoclassical approach and
first-principle derivations is the perception that the testing of social
phenomena is extremely difficult, and therefore the logical foundations of
the model must be fully secure. Thus, whereas physicists can incorporate
unknown constants into their theories because they can eventually
determine the values of such constants through careful experimentation,
economists can only rely on econometric estimates derived from a few
happenstance natural experiments to test their theories. It is argued that
social scientists need to be especially sure that the logical foundations of
their theories are correct, so that errors, which cannot be easily caught
experimentally, will not be propagated.

Whether one agrees with the previous argument, it seems that the
important point to be made is not about the value of axiomatic tools but
rather the necessity of being able to test our theories. Indeed, recently
the area of experimental economics has experienced tremendous growth
and acceptance. The legitimacy of using experimental results to challenge
existing theories is also gaining acceptance, and it is even starting
to drive the theoretical enterprise down new avenues of exploration,
such as learning models in games and behavioral economics. While the
acceptance of an experimental component to theory creation and testing
is likely to continue, it is also the case that experimental methods on
human subjects are inherently limited. Some of the systems of most
interest to economists, like complex macroeconomic systems composed
of hordes of heterogeneous agents, are not easily captured in a standard
laboratory setting.1

Theories can, and should, be separated from the tools used to derive
them. Thus, arguments about whether neoclassical methods are good or
bad seem somewhat misplaced. Different tools are good for different
things. Some tools, like mathematics, are good for developing precise
theories based on simple sets of assumptions. Other tools, like prose,
offer the opportunity to explore subtle features of institutions and
behavior. Tools need to be judged by their ability to enhance the scientific
enterprise; theories need to be judged by how well they are able to
improve our understanding of the world around us, and not by what
tools we used to derive them.

1Later, we will argue that computational methods can begin to fill a role similar to
that of E. coli in biology or Drosophila in genetics, serving as a marvelous experimental
playground for social theorists.
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We often have attachments to particular tools even when they produce
the same outcomes. For example, even though the physical appearance
of an intricately shaped table leg may be identical regardless of whether
it was created by a skilled craftsman using hand gouges or an unskilled
worker using a computerized lathe, we may still feel that the leg created
by the former method is somehow superior. Such attachments seem
misplaced, however, if what we really care about are nice-looking tables.
Thus, whether the proposition that countries on a map can always be
distinguished through the use of only four colors (the so-called Four-
Color Map problem) is proved by the exhaustive enumeration of all
possibilities through the use of a computer program (which has been
done) or through an elegant (or even nonelegant) axiomatic proof (which
has not been done) matters little if all you care about is the basic
proposition.

Perhaps we could argue that an axiomatic proof is still superior
because it may provide some additional insight into the underlying
processes or new theoretical directions in other domains. Whatever the
merits of these types of justifications, they implicitly assume that no
such insights or directions will be forthcoming from the enumerative
approach—an assumption that does not hold in practice.

Alternatively, the argument is made that axiomatic proofs guaran-
tee their outcomes, whereas computational experiments provide only
inductive proof.2 Usually such deductive certainty comes at the cost of
being willing to narrow sufficiently the problem domain, so the issue
here is under what conditions are we guaranteeing the outcome. If the
conditions of the guarantee are excessively onerous, we may well be
willing to accept some inexactness in our predictions in return for more
favorable circumstances.

A nice illustration of the difference between tools and theories arose
many years ago at the Santa Fe Institute. Two researchers, an economist
and physicist, were interested in the expected time of discovery in a
simplified model of random, bit-wise search (a problem with potential
applications in computer science, economics, and genetics). The hour
was getting late, so they decided to work on it overnight. The physicist
went home and, after spending some time trying to solve the problem
analytically, decided to simulate the process on the computer. In short
order, he concluded that the answer approximated nlogn plus a constant
(where n was the number of bits). The economist spent time deriving
an exact solution using recursive function theory. The next day, the
economist with the exact solution was quite surprised to hear of

2Of course, in the case of fully enumerative computations, like the Four-Color Map
problem, this argument fails.
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the compact approximation derived by the physicist. Both tools were
able to “solve” the problem, albeit in different ways, and eventually,
using insights realized by both of these techniques, an even simpler way
to derive the solution was uncovered.

All tools are designed to simplify some task. If the task we face
corresponds with this simplification, then the tool will be of value. On
the other hand, if it does not, then, regardless of the quality of the tool,
we will be frustrated and the outcome will suffer (even with the best
lathe, we will not get good cabriole table legs). Given that most problems
are multifaceted, a corollary of this observation suggests that we may
need to employ different tools when developing our theories. Thus, a full
understanding of supply and demand may require thought experiments
using Walrasian auctioneers, axiomatic derivations of optimal bidding
behavior, computational models of adaptive agents, and experiments
with human subjects.

By attacking problems on numerous fronts, breaches in nature’s walls
inevitably appear. Though it may be difficult to predict on which front
the walls will first crumble, openings on one front are likely to lead to
progress on another. Demanding that all attacks take place in a rigorous
and prescribed manner is reminiscent of red-coated armies maintaining
their formations while confronting the “disorganized” militias of a
rebellious colony.

5.1.1 Physics Envy: A Pseudo-Freudian Analysis

During the late nineteenth century, various “cargo cult” societies emerged
in the South Pacific. By the mid-twentieth century, inspired by their
experiences during World War II, these societies built elaborate mock
facilities, such as airstrips and control towers, in hopes of attracting
deliveries of goods similar to those that colonial officials once received.
Like these societies, we suspect that much of the current view and
apparatus of theory in economics is based on misinterpreted observations
and misplaced hopes.

There is a commonly held perception in economics that its approach
to theorizing closely follows the “one” that is used in physics. Indeed,
at certain levels, modern economic theory does resemble some parts
of physics, where a small set of well-formulated mathematical models
is applied to a broad spectrum of the world. However, based on our
interactions at the Santa Fe Institute with a fine group of theoretical
physicists, we find that this narrow view of theoretical work is far too
restrictive to capture either the reality or the potential of what other
fields like physics have to offer in terms of ways to approach theoretical
questions in the social sciences.
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Theoretical physicists are concerned with, and rewarded by, finding
insights about nature through the creation of models and the generation
of hypotheses. The emphasis here is on understanding nature, not on
the tools used to gain this understanding. Thus, for example, there is a
tool used in theoretical physics called the replica method that requires
taking the limit of the size of a matrix as it goes to zero. Although
this operation has no sensible mathematical justification, the method is
popular because of its success in explaining a seemingly disparate set of
phenomena. Another theoretical approach uses renormalization groups
to reduce complicated stochastic calculations through a recursive series
of gross approximations.

It is not that economics is bereft of such tricks, but rather there seems
to be a prevailing attitude that such tricks are illegitimate and that unless
we have a fully derived-from-first-principles-exact-result, we have failed.
Indeed, many of the same theorists that justify “unrealistic” optimization
assumptions by invoking Friedman’s (1953) arguments that predictions
are all that matters seem to ignore this same advice when confronted with
new theoretical tools.

The premium in theoretical physics is on gaining insight into inter-
esting phenomena. If the insight is there, then there is little desire for
mathematical rigor. Consequently, in physics there is a sharp distinction
between the mathematical and theoretical branches. Having a good
insight and stating a theorem that is not rigorously proved is acceptable
behavior. Once, during a talk at the Santa Fe Institute, a well-known
theoretical physicist was asked if he could rigorously prove a proposition
that he had just made, and his answer was “No, and I don’t need to,
but I’m sure someone can." On first hearing by most economists, this
seemingly casual approach to scientific theory is scandalous at best; yet,
ultimately it becomes a very productive way to make scientific progress.

While axiomatic rigor is not required for theoretical work in physics,
there is still a high premium on good theory—just not on the tools used to
develop the theory. Theory must result in insight and withstand testing.
Thus, if a theorist decides that some new force governing the interaction
between two bodies is likely to be “a lot like gravity,” she may model it
by claiming that it is approximately like 1/dr , where d is distance and r
is an unknown parameter. As long as the resulting equation holds up to
experimentation, this is a perfectly acceptable theory notwithstanding its
lack of a direct, first-principle justification.

There is a branch of physics concerned with mathematical rigor that
appears to be fairly separate from the theoretical branch. Sometimes
this mathematical branch supplies important clarifications and new
theoretical directions, though more often than not its main focus is
on taking previous theoretical statements and putting them in a more
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rigorous context. Perhaps not too surprisingly, the theoretical branch
seems to display a fair amount of indifference to this activity, viewing
it more as just cleaning up the details. This relationship between
mathematics and theory provides an interesting contrast to the norms
that have developed in other fields such as economics.

Thus, in physics you can have a theorem that is widely accepted but
not rigorously proved. This notion is not exactly alien to economists.
For example, the idea of an economic general equilibrium was widely
accepted for almost two hundred years before its existence was “proved”
by Arrow and Debreu. Notwithstanding this example, economists appear
much less willing than their physicist counterparts to accept theorems
without complete, first-principle proofs. The ability to theorize without
the requirement of axiomatic rigor allows a certain freedom in the
attempt to understand nature’s mysteries, and when it is exercised well,
it can lead to significant advances.

5.2 Computation and Theory

By now, it should be clear that the incorporation of a variety of
tools can make for better theory. Much of this book is devoted to
the use of computational tools for theory development. Like all tools,
computational models have advantages and disadvantages. In the next
chapter, we focus on the advantages of computational tools for building
theories of complex adaptive social systems. Here, we discuss some
general concerns surrounding the use of computational tools.

Like all new tools that are brought into the scientific process, com-
putational models confront a variety of universal concerns: Can these
tools generate new and useful insights? How robust are they? What
biases do they introduce into our theories? These concerns are obviously
important for any type of tool we use in modeling (both traditional and
new). Nonetheless, new tools rightfully undergo extraordinary scrutiny
in this regard. Eventually, such careful examinations get forgotten or
ignored as the tools become an accepted part of scientific practice. For
any tool we employ, it is always important that we remember the relevant
issues surrounding its appropriate use, regardless of its current level of
acceptance.

5.2.1 Computation in Theory

There are many applications of computation in theory (versus computa-
tion as theory), and to avoid confusion we will attempt to distinguish
clearly among them (though some fuzziness will remain). First, it is
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useful to note that the use of a computer is neither a necessary nor a
sufficient condition for us to consider a model as computational. Thus,
we would not classify using a computer to approximate the integral of an
analytic equation as a computational model, nor would we exclude from
such a classification Schelling’s (1978) coin-based method for analyzing
neighborhood segregation.

As discussed in chapter 3, the goal of theory is to make the world
understandable by finding the right set of simplifications. Modeling
proceeds by deciding what simplifications to impose on the underlying
entities and then, based on those abstractions, uncovering their impli-
cations. The types of computational models we wish to focus on here
are those in which the abstractions maintain a close association with
the real-world agents of interest, and where uncovering the implications
of these abstractions requires a sequential set of computations involving
these abstractions.

The property of close association is often known as “agent-based”
modeling, though of course this name is confusing given that most
modeling has as its basis the underlying agents. A marginally better
term might be modeling using “agent-based objects” versus “abstraction-
based objects,” with the understanding that agent-based objects require
abstractions as well.

Thus, in a neoclassical model of an economic system, the initial
“agent” equations are often based on the assumption that individuals
optimize their behavior given current information and options. Usually,
given mathematical constraints, most of the underlying agents in the
real system are subsumed into a single object (a “representative” agent).
Finally, the modeling proceeds by manipulating the resulting set of
abstract objects and incorporating some additional assumptions about
driving forces (for example, the system will seek an equilibrium). Com-
putation is often used in these types of models as a numerical method to
help solve a set of abstraction-based objects that defy traditional solution
techniques. For example, we may derive a small set of equations that
describe the general equilibrium properties of an economy, but even
simple sets of such equations may require numerical methods to be
solved.

Modeling using agent-based objects proceeds by abstracting the behav-
ior of the individual agents in the system into simplified agents (similar
to the optimization step, but less constrained by the need to assume
behavior that will anticipate the solution limits of the mathematics to
come). Next, collections of these agent-based objects will be “solved”
by allowing the objects to interact directly with one another using
computation. When computation is applied to such problems, it very
much becomes part of the theory.
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The second property suggested for our computational models—
namely, the need to allow the objects to interact directly with one
another— is an interesting requirement. Obviously, there is no a priori
reason why models with agent-based objects must be solved using such
computations. Such limits may reflect more on the ignorance of the
modeler than the needs of the model. Indeed, some of the best-recognized
theoretical achievements surround the discovery of simple methods
that circumvent difficult computations. Of course, while computational
shortcuts are always desirable, the lack of such shortcuts, even if it is
due to ignorance on the part of the modeler, should not be viewed as an
impediment or diminish the value of computational modeling. Moreover,
there are well-known examples of agent-based object models where it
can be shown that the shortest way to find the implications of the
assumptions is by the full computation itself (Wolfram, 1984a).

The agent-based object approach can be considered “bottom-up”
in the sense that the behavior that we observe in the model is gen-
erated from the bottom of the system by the direct interactions of
the entities that form the basis of the model. This contrasts with the
“top-down” approach to modeling where we impose high-level rules
on the system—for example, that the system will equilibrate or that
all firms profit maximize—and then trace the implications of such
conditions. Thus, in top-down modeling we abstract broadly over the
entire behavior of the system, whereas in bottom-up modeling we focus
our abstractions over the lower-level individual entities that make up
the system.

Part of the desirability of the agent-based object approach to modeling
surrounds the potential failure of reductionism. As discussed in chapter 3,
Anderson (1972) suggested that our traditional view of reductionism may
be very misleading when trying to understand complex systems. Suppose
we know all of the underlying components of a system and all of the
rules by which these components interact—does it then follow that we
understand the system? Perhaps not. For example, if we know the color,
shape, and location of every piece of glass in a stained glass window, do
we necessarily know what figure will emerge from their conglomeration?
While clearly all the information is there, we may not be able to imagine
what the completed window looks like just from reading about each piece
and its location. We may need to “assemble” the window in some form
before any kind of image can emerge. We might get a good idea of the
window by using a crude line drawing, or perhaps a more elaborate full-
color diagram will be required. The level of necessary detail will be linked
to some inherent characteristics of the actual image. In some cases, the
easiest way to “know” the window is to assemble the entire thing piece
by piece.
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Table 5.1
Computation as Theory

Simple Structure Complicated Structure

Agent-based Bottom-up modeling Bottom-up simulation
objects (e.g., artificial adaptive agents) (e.g., artificial life)

Abstraction-based Top-down modeling Top-down simulation
objects (e.g., computable general (e.g., global warming)

equilibrium)

Since the time of Adam Smith we have had a clear understanding of
the components of an economic system (self-interested bakers, brewers,
and the like) and even a set of interactive rules by which they are
governed (market rules and so on). Yet, knowledge of these components
does not necessarily imply that we know how prices emerge. Anderson’s
hypothesis suggests that even if we can fully uncover the microfoun-
dations of behavior—for example, acquire a complete specification of
the psychological aspects of behavior or the probability of interaction—
we may still not have a simple way to understand their macrolevel
implications.

5.2.2 Computation as Theory

Table 5.1 roughly classifies the various applications of computation as
theory that are currently in use. The columns attempt to differentiate
modeling from simulation. As previously discussed, modeling requires a
focus on simple entities and interactions. In addition, good models tend
to have a number of other properties: for example, their implications
tend to be robust to large classes of changes in the underlying struc-
ture, they tend to produce “surprising” results that motivate new pre-
dictions, they can be easily communicated to others, and they are fertile
grounds for new applications and contexts. As the structure of a model
becomes more complicated, many of these desirable features are lost,
and we move away from modeling toward simulation. Simulations do
have uses in science. They often provide a constructive existence proof of
some proposition. Nonetheless, there is a difference between simulation
and computational modeling, though as shown in figure 5.1 the exact
transition point may be a matter of degree. In the rows of table 5.1, we
differentiate between agent- versus abstraction-based objects following
the discussion in the previous section.

In the world of computation as theory, we find a variety of on-
going efforts. A main focus of the artificial-life community is the
creation of relatively complicated systems of agent-based object models
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Real World
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??

Figure 5.1. Modeling and simulation.

(which we would classify as bottom-up simulations). These are often
used as existence experiments to see if a set of rules can imply “lifelike”
behavior. Another use of computation is in analyzing large sets of
equations for such tasks as projecting world population dynamics or
global weather patterns. Each of the equations in these models captures
some aspect of system behavior, for example, population dynamics or
industrial growth. These top-down simulations use the computer as
a way to understand the implications of this set of abstraction-based
objects. There are also abstraction-based object systems that rely on
much smaller sets of equations, such as much of the work in computable
general equilibrium models. These abstraction-based object models use
computation to solve the resulting equation system because closed-form
mathematical solutions are unavailable or difficult to derive. Finally,
there is work that uses agent-based objects (such as artificial adaptive
agents) in an attempt to model systems from the bottom up. It is this
latter work that is the focus of much of this book.

5.3 Objections to Computation as Theory

While the notion that one can do productive theoretical work using
computation models is becoming more widely accepted, it still seems
to provoke intense objections by some researchers. Here we attempt to
address some of the usual objections to computation as theory. In the
next chapter, we take a more proactive view of these methods.
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5.3.1 Computations Build in Their Results

A common objection to computation is that the answers are “built-
in” to the model, and thus we can never learn anything new from
these techniques. Clearly, the first part of this objection is absolutely
correct—the results of the computation are built-in since the computer
will, without error, follow its predetermined program.3 Nonetheless,
the inference that somehow this makes computation an unacceptable
theoretical tool is wrong.

All tools build in answers. If you tell a group of neoclassical theorists
to model problem X, we can expect that the answers they derive will
be built-in in the sense that each theorist is likely to go off and come
up with very similar answers. The real issue is whether the resulting
theories are such that the answers are similar due to some undesirable
tendency of the tool to embed useless relics or its ability to uncover some
deeper truth about nature. Poorly done models, whether computational
or mathematical, can always fail because their results are driven by some
hidden or obscure black-box feature. Having a premium on clarity and
scientific honesty about what is driving the results will always be needed
regardless of the theoretical medium.

It is often wrongly assumed that the built-in nature of computational
models somehow severely constrains the potential insights that such
methods can generate. While, of course, a model can never go beyond
the bounds of its initial framework, this does not imply that it cannot go
beyond the bounds of our initial understanding (and in so doing allow
us to develop new theoretical insights). Hence, even a full knowledge
and understanding of Darwin’s theory of evolution cannot adequately
prepare us for the multitude of wondrous creatures that have resulted
from this theory.

To create models that go beyond our initial understanding, we need
to incorporate frameworks for emergence. That is, we need to have
the underlying elements of the model flexible enough so that new,
unanticipated features naturally arise within the model. Some of the most
interesting frameworks for emergence are those that create general and
flexible structures that get filled in during the course of the computation.
For example, we can give a computation access to a general language
for programming a variety of strategies to, say, play a game like the
Prisoner’s Dilemma, and then allow the computation to determine which
particular strategy out of this broad class to employ based on some
adaptive mechanisms. Such frameworks are rich in possibilities.

3Note that even when we incorporate stochastic elements, we still must rely on
deterministic random-number generators.
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By way of an analogy, consider giving students some clay and telling
them either to make a coffee mug or an object suitable for drinking a
liquid. In both cases, the underlying material (clay) is very flexible, but
depending on the instructions we issue we may get very different objects.
The instructions to “make a coffee mug” are likely to lead to a set of
very similar objects, whereas the request to “make an object suitable for
drinking a liquid” could result in a host of possibilities. Useful models
arise when we impose just enough instructions to get objects of interest,
but not so many as to preimpose a solution.

5.3.2 Computations Lack Discipline

Another common objection to computational models is that they lack
sufficient discipline or rigor to be of use. There are a few aspects
to this critique. Given the vast potential of computer programs to
express a variety of subtle conditions, there are very few constraints
on the formulation of models. Mathematical models get around this
issue by severely constraining the original formulation of the model,
since practitioners know that breaking away from a limited set of
assumptions results in an unsolvable model. The lack of constraints on
formulating computational models is potentially, of course, a source of
great advantage as long as it is used wisely.

Computational approaches, like many other methods, require the
modeler to have a high degree of self-discipline to ensure that the tech-
niques are appropriately used. There is, obviously, nothing preventing
such a discipline from forming. In many ways, the discipline required for
using computational models is similar to that needed in laboratory-based
experiments: Is the experiment elegant? Are there confounds? Can it be
easily reproduced? Is it robust to differences in experimental techniques?
Do the reported results hold up to additional scrutiny?

The hope, of course, is that the inherent nature of computational
techniques is such that, even with self-imposed constraints (dictated
by quality modeling considerations), new classes of models better able
to explain key phenomena will emerge. The flexibility and creativity
embodied in computer models often seduce practitioners to continually
add features to their work—a practice that must be moderated if good-
quality models are to be maintained.

The inherent flexibility of computational models can also make them
hard to understand and verify. Mathematical models surmount this
issue by having a rigorous set of solution techniques and verification
mechanisms. Given the newness of many computational approaches,
there has yet to emerge an agreed-upon set of standards. There are a
number of techniques that have been, and are being, developed to make
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sure that computational claims are valid, and we discuss some of these
“standards” in appendix B.

The fact that computational models are convenient and flexible should
be viewed as a distinct advantage. There are the usual economic trade-
offs in using theoretical tools, and where we are given opportunities to
acquire “cheap” results, we should be willing to substitute into such
tools. Computational models often offer an initial foray into a problem
that might be impossible to crack using traditional techniques, though,
using the insights from computation, the problem may then yield to more
traditional methods.

5.3.3 Computational Models Are Only Approximations
to Specific Circumstances

Many analytic methods provide exact answers that are guaranteed to be
true. Alas, all models are approximations at some level, so the fact that,
say, a mathematical model gives us an exact answer to a set of previously
specified approximations may not be all that important. Good answers
only make sense when we are asking good questions.

Computational models often result in answers that may be approxi-
mations that cannot be directly verified as being correct. Relying on such
approximations may be perfectly acceptable, given the potential high
cost of getting exact solutions, and even necessary in those cases where
exact solutions are infeasible. Moreover, there are techniques, both in
how models are formulated and how they are tested, that should help
ensure that the results we are finding are not due to some computational
anomaly.

Another potential reason for preferring more traditional modeling
methods is that they are more generalizable. At the most basic level, a
parametric mathematical solution can be used to solve a variety of cases
via simple calculations (or other analytic techniques, like comparative
statics, can be used to make statements about the influence of the
parameters). Bottom-up computational models do not have this feature
directly and often must be recalculated each time a new solution is
desired. Although this process can be automated, nonetheless it is costly.

Generalizability has a broader interpretation in which a given model
can be used to explore new contexts. The ability to use a model for
this purpose is tied to the way the model is created, as opposed
to the medium of creation. Thus, there are both mathematical and
computational models that cannot be easily extended beyond their initial
structure and original purpose. Well-designed models capture just enough
of the problem to be useful and avoid relying too heavily on any specific
implementation details of the theoretical tools used in their creation. Such



December 5, 2006 Time: 11:25am chapter05.tex

72 • Chapter 5

models are able to flow naturally into other domains, regardless of the
modeling substrate.

The ability of a model to generalize is linked closely to its inherent
frameworks for emergence. Consider the previous analogy of giving
students some instructions for how to form clay. If the instructions are
too specific, the types of vessels emerging from the potters will be very
constrained—all are likely to have similar form and utility. Under the
more general set of instructions, however, the model has the potential
to generate a diversity of forms, ranging from sipping bowls to beer
steins. Using such results we can distill out the important elements of
these worlds (in this case, basins for storing liquid, surfaces for conveying
the liquid to the mouth, and so on). Such diversity not only allows us to
use the model to explain a broader class of the world, but it also helps
us discover the important generic features from which we can begin to
build more inclusive theories.

5.3.4 Computational Models Are Brittle

Computational models are often thought to be brittle, in the sense that
slight changes in one area can dramatically alter their results. This fear
is perhaps due to the experience of having a computer program crash
after some seemingly innocuous input or alteration. Indeed such crashes
are rather dramatic, though they are not unique to computational tools.
For example, we see similar collapses in a mathematical model when we
alter our assumptions about, say, the form of the utility function or the
compactness of the strategy space. For good modeling we need to keep
in mind the brittleness of our tools and actively work to avoid producing
theories that are too closely tied to any particular assumption.

Brittleness in computational models can be prevented by having a
simple and obvious design. The incorporation of emergence frameworks
tends to prevent brittleness since such frameworks are typically robust
to specific implementation details. Modelers can also prevent brittleness
by creating sets of alternative implementations for key features of the
model. For example, models that focus on adaptive agents can implement
different types of adaptive algorithms. There are also techniques, such
as Active Nonlinear Testing (ANTs) (Miller, 1998), where automated
searches attempt to uncover brittle areas of the model (see figure 5.2).
Some practitioners also use multiple implementations of their models,
relying on relatively general specifications and a variety of computer
languages to help ensure that specific implementation details do not drive
the result. Another approach to prevent brittleness is to “dock” two
different models on a common problem, by altering both models until
their results converge (Axtell et al., 1996).
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Figure 5.2. Active Nonlinear Testing (ANTs) of a complicated simulation
model. An ANTs algorithm was used on a widely publicized simulation model
of global population dynamics. The algorithm was allowed to alter any of
ninety-six parameters by at most 10 percent each. The algorithm found
manipulations that resulted in a predicted population of 28 billion in year 2100
(versus only 4 billion in the original model). This result is well outside the range
predicted by a Monte Carlo analysis (given by the dotted line and tick marks at
2100). A more restricted search found that nonlinear interactions among only
three parameters could lead to populations of around 14 billion with only minor
parametric changes. More details can be found in Miller (1998).

As more and more computational models are developed and explored,
our understanding of the typical areas where brittleness may occur will
be improved. Such an understanding will not only help us create better
models, but it should also be of use in furthering our understanding and
control of real systems.

5.3.5 Computational Models Are Hard to Test

Although complex systems and equilibrium models can differ in how they
produce testable hypotheses, overall what they produce is quite similar.
In both cases we can make refutable predictions.

Consider the familiar model of supply and demand from economics.
Equilibrium theory suggests that the market price and quantity will
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equilibrate where the quantity demanded just meets the quantity sup-
plied. Using this notion, we can do comparative statics. When, say, the
price of a substitute commodity rises, we would predict that the demand
for the good under consideration would rise at all prices. As a result
of this shift in the demand curve, the equilibrium price and quantity
should rise.

These comparative static results are powerful. Suppose that we con-
structed a model of the market for some commodity like apples, and
that we considered the effects on equilibrium apple price and quantity
of, say, an increase in the production costs of a substitute like pears.
Our prediction would be that, if the price of producing a pear rises, the
market price of apples and quantity of apples sold would both rise. If
we had lots of data on which to base our model, we might even make a
point prediction, say, that a 5 percent rise in the price of pears leads to a
3 percent increase in the price of apples and a 2 percent increase in apple
sales.

This all seems wonderful and powerful. However, if we looked at
actual data to test our model, we would see that things are a bit murkier.
The best that we might hope for would be a small cloud in price-
quantity space centered on our point estimate. If so, we could consider
the difference between what actually happened and what we predicted as
noise—as random shocks that we did not include in our model. If, on the
other hand, the cloud of data lies far from our point prediction, then we
should reject our model.

While the preceding example is a somewhat extreme oversimplifica-
tion, it does neatly conceptualize empirical tests of equilibrium models.
Essentially, we end up comparing points to clouds.

Complex systems models sometimes settle down into equilibrium as
well. However, that equilibrium is often not unique, as it may depend
on various random elements of the model or nonlinearities. Complex
systems models can also remain alive and not settle down to any obvious
equilibrium. In these worlds, agents continually respond to the actions of
others, and the system is in perpetual motion.

The lack of equilibria in complex systems models does not imply a
lack of regularities. Imagine a crude complex systems model of apple and
pear markets. In this market, buyers would use rules to decide whether
to buy apples or pears depending upon the price. Sellers would use rules
to set prices based upon past sales and on the costs they pay to produce
apples and pears. Moreover, buyers and sellers might be positioned in
space. Buyers would go to particular sellers and only experiment with
new sellers with some probability. Neither buyers nor sellers would have
elaborate models of prices. Instead, sellers would adjust prices and buyers
would adjust purchases by some crude means.
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Any given outcome of this model would differ from others depending
upon the random features inherent in the rules. This does not mean
that the model makes no predictions. If we ran the model a hundred or
a thousand times, we would get a distribution of outcomes—a cloud.
In this particular instance, that cloud would probably show that an
increase in the production costs of pears leads to an increase in the
number of apples sold as well as an increase in the price of apples.
When we compare the outcome of this model to a real-world situation,
we would be comparing the distribution of outcomes produced by
the model to another distribution of outcomes produced by the real
world—comparing clouds to clouds.

Thus, the computational model does make a testable prediction. In
fact, it makes even more testable predictions than the equilibrium model.
For example, our model might predict that shifts in demand result in less
variation in price than shifts in supply or that price changes greater than
some percentage create a tipping phenomenon in which many people
switch sellers. Kirman’s (1997) used an agent-based model of the fish
market at Marseille that predicted long-term buyer and seller relationship
patterns that were evident in the data from the actual market.

Owing to the path dependencies, multiple equilibria, and even the
absence of equilibria altogether in many agent-based models, testing
can often be more difficult. Models that settle into equilibrium tend
to include primarily negative feedbacks. When a firm makes positive
profits, other firms enter and wipe out those profits. Here, actions are
offset by other actions. In contrast, systems that generate complexity
tend to include positive feedbacks as well. When one politician takes
a new policy position, it creates incentives for other politicians to move
as well, and when those politicians move, they set in motion an endless
sequence of further movements. When one person commits a crime, they
alter the incentives for others to do so, resulting in a cascade of crimes
and victims.

Systems with mostly negative feedback tend to be very stable and
predictable. Extraneous factors left out of the model can even be
absorbed by the actions of the agents, leading to even less noise than we
would expect from a prediction relying on the Central Limit Theorem.
However, in systems with positive feedback, we loose some predictability.
Small differences can build upon themselves and create large differences,
making precise prediction difficult.

Empirical testing of complex systems models may require new
advances in statistics. Many complex systems research efforts focus on
analyzing the key temporal and spatial patterns that emerge in the model.
While the human mind is quite adept at recognizing such patterns, we do
not yet have a suite of easily applied statistical tools that can assist in this
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task. Such tools, along with advancing the study of complex systems, are
also likely to have a variety of more direct empirical applications, such as
recognizing useful patterns arising in real-world phenomena like markets
and geographic-location decisions.

Even as purely abstract objects, computational models are useful. They
provide an “artificial” reality in which researchers can experience new
worlds in new ways. Such experiences excite the mind and lead to the
development of novel and interesting ideas that result in new scientific
advances.

5.3.6 Computational Models Are Hard to Understand

Finally, computational models are often dismissed because it may be
difficult to fully understand the structure of the model and the various
routines that drive it. Regardless of how the models are communicated,
it is always easier to describe and understand simpler models. The actual
computer code itself is a complete specification of the model, but there is
a big difference between a complete specification and an accessible one.
Indeed, most computer programmers have had the experience of looking
at someone else’s code (or even their own) and not being able to decipher
it without a very intensive analysis.

Part of the issue here is that there are not commonly accepted (or
understood) means designed to communicate computational models.
There are, however, some notable efforts in other fields. For example, in
object-oriented software design, after many separate efforts, a standard-
ized way for specifying designs known as the Unified Modeling Language
(UML) has emerged. Perhaps UML, or some other variant, will become
the lingua franca of agent-based object modeling.

Ultimately, computational modelers must strive to create simple, easily
communicated models. At the core of any computational model, like
any mathematical model, there needs to be a simple set of driving
propositions. It is these propositions that make up the model, not the
apparatus that surrounds them. Core propositions in computational
models are surrounded by lines of computer codes; in mathematical
models, such propositions are surrounded by various solution techniques
arising from, say, the calculus or linear algebra. In either case, it is the
core propositions that we need to focus on and communicate.

5.4 New Directions

Computation as theory has an enormous potential for allowing us to
investigate and understand better key phenomena, especially in complex
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adaptive social systems. While computation as theory can have many
meanings, and surely over time it will acquire new ones, the focus of the
models in this book is on computations that are designed to improve our
theoretical understanding of the world by relying on agent-based objects.

Thus, we are more concerned with understanding the processes under-
lying the computations, as opposed to the computations themselves. To
understand the underlying processes, we may well need to acquire direct
experience with the computations through a series of carefully planned
experiments, but the goal behind such work is the ability to create a set of
propositions that apply both to the computational system and to other,
more general, systems. Sometimes, running a single computation that
shows the existence of some property of general interest could qualify
under this definition, though computations that are used to predict the
outcome of a particular (and often complicated) set of equations, rather
than understanding the underlying processes, would not.

Second, we focus here on models that are composed of a set of
simple algorithmic components, each associated with an individual agent.
This requirement may seem a bit quirky at first—if our real concern
is generating theoretical understanding from computation, why should
we force these computations to use agent-based objects? Part of our
reason for adopting this requirement is that it allows us to focus our
efforts on an important, and relatively new, aspect of computation as
theory.4 More importantly, we feel that this requirement directs us into a
realm of modeling that is likely to be very productive for understanding
complex adaptive social systems. As discussed in the next chapter, these
models have comparative advantages over other techniques (apart from
convenience) that allow us to explore heretofore inaccessible problems
that may hold the key to understanding more fully the behavior of
complex adaptive social systems.

4There are many existing references, such as Judd (1998), that cover the numerical
methods aspects of social science computation.
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Why Agent-Based Objects?

Water which is too pure has no fish.
—Ts’ai Ken T’an

Scientific laws have conventionally been constructed in terms
of a particular set of mathematical functions and constructs,
and they have often been developed as much for their
mathematical simplicity as for their capacity to model the
salient features of a phenomenon.

—Stephen Wolfram, “Computer Software in Science and
Mathematics”

With many calculations one can win; with few one cannot.
—Sun Tzu, The Art of War

Agent-based object models offer a new theoretical portal from which
to explore complex adaptive social systems. Like any theoretical tool,
these models have comparative advantages for certain types of explo-
rations. In fact, their advantages appear particularly well suited, and
perhaps even necessary, for helping us to understand better the types
of problems that arise in the study of complex adaptive social systems.
Many of our existing tools tend to purify the theoretical waters so much
so that we are often left with a model that is barren of any useful signs
of social life. Tools like agent-based object models allow us to create new
theoretical ponds that can harbor simple, yet thriving, social ecosystems.

Much of the discussion in this chapter contrasts agent-based object
modeling with more traditional mathematical tools (see table 6.1). As
previously mentioned, no single theoretical tool is suitable for all needs,
and we are certainly not claiming that agent-based object modeling is
an exception. We do, however, suggest that the constellation of features
offered by such models represents a very appropriate set from which to
gain new insights into complex adaptive social systems.

6.1 Flexibility versus Precision

An important feature of any theoretical tool is its trade-off between
flexibility and precision. Flexibility occurs when the model can capture a
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Table 6.1
Modeling Potential

Traditional Tools Agent-Based Objects

Precise Flexible
Little process Process oriented
Timeless Timely
Optimizing Adaptive
Static Dynamic
1, 2, or ∞ agents 1, 2, . . . , N agents
Vacuous Spacey/networked
Homogeneous Heterogeneous

wide class of behaviors; precision requires the elements of the model to
be exactly defined.

One approach to achieving maximum flexibility is to use long verbal
descriptions of the phenomena of interest. This tradition is well estab-
lished in economics; for example, Smith’s (1776) rather lengthy Wealth
of Nations models a grand scheme of how the selfish behaviors of indi-
viduals can result in an outcome with surprisingly organized aggregate
behavior. Such verbal descriptions, while flexible, often suffer from a
lack of precision. There is an inherent ambiguity to such theorizing in
terms of what is being expressed. More important, the implications of
these types of descriptions are often difficult to verify—it is possible to
make an apparently logical and coherent verbal argument that may in
fact contain serious flaws.

At the other extreme are precise tools, like those embodied by some
mathematical techniques. These techniques allow us to define a set of
phenomena precisely and then solve the resulting system using a standard
set of solution methods. Unfortunately, the cost of such precision is often
a lack of flexibility in the phenomena that we can explore. To employ
these solution methods, we need to have the components of the model
pure enough so that they can be easily manipulated. While at times this
added purity is an acceptable trade-off, it is easy to distill things so far
that the system we are studying is of little interest or application.

Computational models represent an interesting trade-off between
flexibility and precision. Computational models are remarkably flexible
in their ability to capture a variety of behaviors. Many, and perhaps all,
systems of interest to social scientists are likely to be computationally
complete—that is, able to be encoded by a general purpose computer
language. At the same time, computational models also require a high
degree of precision. The computer program contains all the information
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about the assumptions of the model in a relatively compact form.
Moreover, for the program to compile, there must be some level of
logical consistency among the various parts of the program. This level
of consistency is at a relatively low level: program statements must
not directly contradict one another within the context of the required
calculations.1

6.2 Process Oriented

By their very nature, computational models require a high degree of
precision with respect to the underlying processes involved in the model.
For a computational model to run, every aspect of how agents are
allowed to interact must be well specified. Such issues are often ignored in
mathematical models. For example, consider a simple market composed
of equal numbers of buyers and sellers trying to trade with one another.
A computational implementation of such a model requires us to define
carefully when each agent is allowed to act, with whom it can interact,
and its set of possible actions. Moreover, we must also specify what
information each agent has access to, how it can use that information,
how to resolve simultaneous offers, and so on. While any modeling
method could incorporate such details, it is often the case that such
process details are essentially ignored and taken care of by a narrow set
of, often unconscious, defaults.

Appreciating the lack of process precision we employ in our modeling
is difficult until one takes a standard model and implements it computa-
tionally. Indeed, it is worthwhile to program a “simple” market model or,
for the less ambitious, to construct a simple algorithm for determining the
competitive equilibrium “price” and “quantity” in a world with discrete
values. Programming such models is often an enlightening experience in
terms of the amount of process we ignore when we use traditional tools.
Although some of the most interesting driving forces in social systems are
related to process, being able to ignore things may be a real advantage in
modeling (though, of course, explicitly knowing about and appreciating
the impact of what we are ignoring is still needed).

Given both the flexibility and precision inherent in computational
models, these methods can be a nice way to structure new problems.
Computational implementations of problems often illuminate the key
features and processes that must be modeled. The well-defined nature
of computation can often point us toward new frameworks from
which to make theoretical progress. Much of the creativity required for

1Thus, there are no guarantees that the program is logical given the goals of the model.



December 7, 2006 Time: 09:29am chapter06.tex

Why Agent-Based Objects? • 81

developing such models is in finding a good way to represent the key
issues (in computational learning, this is known as the “representation
problem”).

Traditional models of technological progress in economics often rely
on a single parameter in a production function to represent “technology.”
While implementing such a parameter is a nice way to simplify the world,
it is so drastic a simplification that many of the important issues we
normally associate with technology get lost. In computational work,
a natural way to model technology is as a bit string, where each bit
represents a different binary technological choice (for example, whether
to have two or four doors on a car or to add tail fins). We can then make
the value of a particular set of technological choices depend on some,
perhaps nonlinear, function of the bits. Given this representation, we can
begin to structure some potentially interesting questions; for example,
search can become a cumulative process of discovery, technological
breakthroughs can be modeled as “mutations” in the bit string, and more
elaborate innovations, such as when one firm appropriates the ideas of
another, can be captured via larger “swaps” among bit strings.

6.3 Adaptive Agents

A long-standing interest of social scientists is how bounds on the
ability of agents to rationally process information impact the behavior
of social systems. A related set of questions concerns the influence
of learning on such systems. At one extreme, is the belief expressed
by Friedman (1953) and others that evolutionary mechanisms result
in systems composed of only those agents who employ high degrees
of rationality and information-processing ability. Thus, assuming that
outfielders in a baseball game have the ability to manipulate Newton’s
equations rapidly and determine the exact spot on the field where a pop
fly will land may be sufficient to predict where the outfielder will end
up.2 (Friedman used the example of billiards, but we choose baseball for
reasons that will become obvious later.)

A priori, it is not clear that evolution must lead to optimization.
Evolutionary systems often get stuck at local optima (for example, many
organisms eat and breath through the same tube, even though this often
causes them to choke). It may be that adaptive social systems act more
like two campers fleeing from a marauding bear, where the goal of each
camper is not so much to outrun the bear as it is to outrun each other.

2Anyone who has played on an academic department’s softball team may have good
reason to doubt even this assumption.
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Clearly, the evolution-leads-to-perfection argument is one that is worthy
of testing directly, as knowing the exact conditions under which it holds
would allow us to apply our other theoretical tools better.

The flexibility of computational tools make them well suited for con-
sidering models of boundedly rational agents who adapt their behavior.
In fact, computational models of learning have been developed in a
variety of fields, including computer science, physics, and psychology.
Early work in this area focused on relatively high-level cognitive models
that solve problems by manipulating symbols. The initial success of
these efforts on toy problems was quite striking and suggested to
researchers that within a very short time such models would form the
basis for, say, world-class-level chess programs. Real problems proved
much more difficult than initially thought. For example, IBM’s Deep Blue
program beat Kasparov not by matching the elegance of Kasparov’s 2- or
3-position evaluations per second, but rather through a relatively crude
brute force algorithm capable of evaluating 200 million positions per
second.

An alternative to the symbolic approach to learning is a class of
low-level adaptive algorithms, such as genetic algorithms and parallel
distributed processing. This alternative approach was initially criticized
as being too unstructured and, regardless, not needed given the promise
of the more top-down cognitive approaches. The low-level adaptive
algorithms, however, gained ground when the limits of the top-down
approach become more apparent.

The ability to analyze systems of “adaptive” agents systematically is an
area of great promise for social scientists, but it does face a potentially
serious scientific challenge: can we create a coherent science of adaptive
agents? One advantage of optimization-based models is that there is
typically only one way for an agent to be optimal while, as we all have
experienced at one time or another, there appears to be an infinity of ways
for an agent to be “dumb.” Thus, we could find ourselves in a situation
where an ever growing zoo of adaptive agents arises and the field quickly
becomes mired in endless debates about the appropriate way for agents to
be dumb. One resolution to this potential quandary would be to agree on
a particular set of adaptive assumptions, perhaps based on experimental
data on human learning or some other criterion. A more interesting and,
in our opinion, more promising approach is to “let a thousand flowers
bloom” in hopes that large equivalence classes of adaptive behavior will
be discovered. A number of computational experiments already suggest
that seemingly different adaptive algorithms behave in very similar
ways.

The quest for understanding better the features of adaptation that lead
to common behavior is a key scientific question. At the moment, the
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evidence from computational models hints at the potential existence of
a large equivalence class of adaptive behavior. If such a hypothesis is
confirmed, we will be able to model more easily the behavior of adaptive
systems, as the exact implementation of details will not matter. More
important, such a result would help us unify our understanding of a
variety of systems, both natural and artificial.

6.4 Inherently Dynamic

Many of our existing analytic tools avoid an emphasis on dynamic
processes and focus on equilibrium states. When transition paths are
short and conditions are stable, such an approach may provide a good
description of the world. In natural systems, however, equilibria are
usually associated with the death of the system. The conditions that
favor equilibrium analysis are likely the exception rather than the rule
in many complex adaptive social systems. If so, the techniques that
we traditionally use to analyze these systems may be like trying to
“understand running water by catching it in a bucket.”

Even when the conditions are right for equilibrium analysis, under-
standing the dynamics of the system may still be important. In models
with multiple equilibria (a situation that is often intentionally avoided
by theorists), dynamic considerations may be used to select among
equilibria. In adaptive systems with multiple equilibria, we often find that
certain equilibria are associated with larger basins of attraction3 and thus
are much more likely to trap the adaptive agents. Similarly, the stability
of a particular equilibrium is tied closely to the dynamic behavior of
the system. Finally, dynamic notions can be used to clarify the transition
path and time to equilibrium. While a proof that the system will, say,
asymptotically converge on a particular equilibrium is very useful, the
importance of that result depends on whether the transit time is a few, or
a few billion, iterations.

A nice example of where the dynamics are interesting even when a
single, well-defined equilibrium exists is the previously mentioned case
of catching a baseball. While it is true that the equilibrium analysis of
an optimizing, Newtonian outfielder does make an accurate prediction
of the player’s equilibrium position on the field, this model does quite
poorly at predicting the actual path to that point. Outfielders do not run
in a straight line from whatever their location happens to be when the
ball is hit to the place on the field where the ball will land. Instead,

3Basins of attraction are the areas of the space where the dynamics lead the system to
a common outcome. Thus, they are similar to watersheds—regions of land where water
drains to a common outlet—in the physical world.
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studies (for example, McBeath et al., 1995) indicate that outfielders
run in an arc-shaped path that is consistent with a simple, vision-based
behavioral heuristic that keeps the ball on a linear trajectory relative
to the background. Depending on what we are trying to predict or
understand, this difference in behavior may or may not be important.
For example, if outfielders were not allowed to move but got paid by
predicting where the ball would land based on the initial information, it
is doubtful that our equilibrium model would be of much use.

A more mathematical example of some of these issues comes from
a Markov model of, say, strategic nuclear armament. It can be shown
that this model has only a single absorbing state, namely a world
that is completely destroyed by nuclear war. Thus, the model predicts
that we will end up (with probability one) in such a state. Obviously,
notwithstanding the strong prediction, most of the interest in this kind
of system is in its (hopefully very long) transient behavior.

Social scientists have often recognized the importance of dynamic
analysis but have been very constrained by their tools. According to
Von Neumann and Morgenstern (1944, 44), in their seminal work on
game theory, “We repeat most emphatically that our theory is thoroughly
static. A dynamic theory would unquestionably be more complete and
therefore preferable. But there is ample evidence from other branches of
science that it is futile to try and build one as long as the static side is not
thoroughly understood.”

Computational models using agent-based objects are a very natural
way to explore the dynamic behavior of a system. Regardless of the
presence of equilibria, such behavior is often the most interesting part
of the system. As Ursula Le Guin (1969, 220) said, “It is good to have an
end to journey toward; but it is the journey that matters, in the end.” In
situations in which equilibria are a possibility, understanding the dynam-
ics is likely to be insightful. In situations where equilibria are nonexistent
or transient paths are long, understanding the dynamics is critical.

6.5 Heterogeneous Agents and Asymmetry

Most of our existing analytic tools require that the underlying agents
have a high degree of homogeneity. This homogeneity is not a feature we
often observe in the world but rather a necessity imposed on us by our
modeling techniques. Unlike traditional tools, computational methods
are able to incorporate heterogeneous agents easily.

Whether we actually need to model heterogeneity is an impor-
tant research question. It may be the case that given sufficient agent
heterogeneity, the aggregate behavior of the system may no longer depend
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on the various details of each agent, and abstracting this behavior into
a single representative agent is feasible. This is an open question, and
we can use computational models to address it directly. All modeling, at
some point, needs representative agents to emerge. The key is to make
sure that we get the right representatives for the right reasons.

A second area in which we are forced to simplify our models is in
the amount of asymmetry we have in the system. Like homogeneity,
symmetry assumptions dramatically simplify calculations, and so they are
used even though asymmetry may be a pervasive and influential feature
of social systems. We know from some mathematical models that simple
asymmetries in, say, information can alter our prediction of a single,
well-behaved equilibrium point to one where there are multiple equilibria
linked to, say, agent expectations. Computational models that use agent-
based objects can easily accommodate asymmetries.

6.6 Scalability

The ability to solve a model analytically is often tied to the number
of agents that are used. Thus, traditional methods typically focus on
models composed of either very few or very many agents. In physics,
for example, mathematical methods exist for modeling planetary motion
with two, three, and an infinity of planets. The intermediate cases are
too difficult to solve analytically and must be solved computationally.
In economics, we have good mathematical models of industrial behavior
with monopolies, duopolies, and perfect competition. Once we begin to
analyze systems of oligopolies, however, we are confronted with a lot of
theoretical ambiguity.

Models with agent-based objects are easily scaled. Once the behavior
of a single agent is described, it is usually easy to explore the behavior of
systems of essentially arbitrary size by simply adding more agents to the
system.

There are many examples where scaling up a system even slightly can
have dramatic effects. In economics, we see such changes when we move
from one to two to three firms in our models of industrial behavior.
Adding a new dimension to a system can often cause its behavior to
change dramatically as well. There are examples, such as in percolation
and spatial voting theory, where a theorem becomes impossible to prove
(or even becomes contradicted) as we add another dimension to the
problem.

Being able to manipulate easily the scaling of our models may promote
the discovery of key scaling laws for complex adaptive systems. In
biology, the branching features of a variety of respiratory systems scale as
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a fixed power of body size across at least twenty-five orders of magnitude.
In economics, city and firm size distributions appear to follow well-
known scaling relations. Computational models may offer a suitable
Petri dish from which to initiate a more direct investigation of social
scaling laws.

6.7 Repeatable and Recoverable

Computational models provide some unique opportunities as an exper-
imental medium. A lot of theory is inspired by anomalies observed in
the real world, and the artificial worlds created by agent-based objects
can provide similar inspiration. Unlike the real world, however, anytime
we observe an anomaly in a computational model the initial state of the
system can be recovered, and we can “rerun the tape” and observe the
old system from whatever new perspective is needed to reveal the cause
of the anomaly. This ability to rerun and reprobe a system facilitates the
rapid development and refinement of theoretical ideas.

Computational worlds are also repeatable, allowing multiple observa-
tions on the “identical” system. Not only can these systems be intensively
probed, as we have discussed, but subtle experiments can be conducted
with a degree of precision unattainable in real experimental settings.
In real experiments, especially with human agents who often alter their
behavior based on experiences or expectations, it is impossible to repeat
an experiment with the same subject under near-identical conditions.
In computational models it is easy to take back the experiences of the
subjects and run them anew with slight alterations in the parameters.
Moreover, other elements that often confound experimenters, such as
manipulating payoffs, expectations, and risk aversion, can be tightly
controlled in artificial worlds.

6.8 Constructive

Agent-based object models inherently provide constructive “proofs” to
propositions. In particular, once we specify an agent-based object model
and find that it leads to a coherent macrophenomenon, we have thereby
found at least one set of microconditions that is sufficient to generate
the macro-observations. This, of course, does not imply that our set
of conditions is the one that actually produced the phenomenon in the
real world. Nonetheless, Epstein (1999) argues that this “generative”
approach—that is, we must grow it to show it—is a distinct and powerful
way to do social science.
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The ability to fully generate a phenomenon from the bottom up
often provides new avenues of insight and understanding. Of course,
science can make, and has made, great progress without constructive
explanations, but this more often than not reflects the difficulty of
attaining such explanations rather than their desirability. Having a
complete view of a phenomenon, from its origins to its manifestation,
is inherently satisfying. While we can, say, do biology by not worrying
about how DNA came into being, the origins of life address a deep
scientific curiosity. More important, by understanding the origins of a
phenomenon we often gain new insights into its current manifestations,
even when the generative process is no longer active.

By analogy, consider proving a proposition using a proof by construc-
tion versus one by contradiction. Proofs by contradiction are a perfectly
legitimate way to establish the validity of a proposition. Nonetheless,
they typically are not that intellectually satisfying—at some point during
the proof a contradiction is established and therefore the original
proposition must hold, but the contradiction rarely provides any useful
insights into the underlying problem beyond proving the proposition at
hand. Unlike proofs by contradiction, the formulation of a constructive
proof often provides new avenues from which to venture forth with new
propositions.

Hayek (1945, 530) made a direct appeal to generative explanations
with respect to market phenomena:

The problem is thus in no way solved if we can show that all the facts,
if they were known to a single mind (as we hypothetically assume them
to be given to the observing economist), would uniquely determine the
solution; instead we must show how a solution is produced by the
interactions of people each of whom possesses only partial knowledge.
To assume all the knowledge to be given to a single mind in the same
manner in which we assume it to be given to us as the explaining
economists is to assume the problem away and to disregard everything
that is important and significant in the real world.

6.9 Low Cost

Sometimes computation may be necessary to solve theoretical questions;
other times it is merely convenient. Computational methods tend to be
very cost effective. While developing the initial computational model can
be costly, the marginal cost of running or modifying it is usually very
low. Thus, once the model is developed, it is easy to run sufficient trials
to accommodate any statistical necessities or to incorporate additional
factors in the experimental design.
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There is a simple economic argument justifying the use of computa-
tional models. Over the past few decades, computational costs, in terms
of hardware, software, and human capital, have experienced significant
declines. During the same period, traditional analytic methods are start-
ing to operate under conditions of high diminishing marginal returns.
Thus, the costs of acquiring new theoretical results using traditional
means keep rising, while the costs of doing so using computational
methods remain on a favorable part of the production function. Given
these differences, producers of theoretical ideas should begin to substitute
computational methods for more traditional ones.

6.10 Economic E. coli (E. coni?)

The interaction between the theorist and the computational model
provides an ideal medium from which theoretical insights can be gleaned
(Tesfatsion, 1997, 2006). Agent-based object models give the theorist
some rather intimate experiences with the phenomena of interest. As we
have outlined, these artificial worlds are fully observable, recoverable,
and repeatable, and thus they are a fertile playground from which
theories can be created, refined, and tested. Like many theoretical tools,
computational models have the potential to produce insights well beyond
those needed to implement the original model.

A fanciful, but perhaps ultimately enlightening, use of agent-based
object models is as an “animal” model for the social sciences. The
ability to experiment with animal models like E. coli in biology and
Drosophila in genetics, has led to great advances in our understanding
of human systems. Unfortunately, there is not an obvious choice of an
animal model for social systems research. Indeed, even human-based
experiments are relatively new in fields like economics, where their
results are just beginning to facilitate the process of scientific creative
destruction. While the possession of a simple animal model is not
necessary for scientific progress—both economics and astronomy were
developed around passive-observation-based methodologies—having an
animal model may lead to new scientific opportunities.

Computational models composed of artificial adaptive agents (with
apologies to Linnaeus, we could call the critters E. coni) could prove
to be a productive way to develop new social theories. These simplified
economic systems might be just sufficiently complex to allow “real”
economic behavior to emerge in a more observable and understandable
world. Computational Petri dishes of E. coni could be used to create
social equivalents of the Galapagos Islands and, in so doing, help us
attack some central questions: How general are our theories? How much
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agent sophistication do we need in a system before it becomes social? At
what point do agent details cease to be important?

Such “alternative” worlds offer wonderful opportunities to even those
theorists wedded to traditional tools. For example, artificial-life models
like Packard’s (1988a) work using artificial bugs seeking food on a
landscape or Epstein and Axtell’s (1996) Sugarscape model are often
dismissed by economic theorists as lacking useful economic content. Such
arguments seem misplaced (especially given the usual lack of timidity
in the application of economic theory to other areas). At some, albeit
simplified, level these systems are all about the processes that economists
hold most dear: scarcity, choice, and exchange. As such, they can serve as
a nice test bed for our theories. How well do standard theories, perhaps
developed to explain more sophisticated phenomena, operate in these
simplified worlds?

While creating artificial worlds of E. coni may at first appear to be a
bit odd, the actual cost of doing so is low and the potential benefits are
high. Indeed, we may already have such worlds emerging in the form of
software agents, either real or artificial, interacting on the Internet.

Our theories are often developed based on, to paraphrase Langton
(1989), social life as we know it rather than social life as it could be, and
having access to some alternative universes to explore should allow us
to develop better theories. Suppose we happen upon an alien civilization,
what a priori predictions would we make about its social and economic
behavior?
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P A R T IV

Models of Complex Adaptive
Social Systems

In the chapters that follow, we explore a variety of models of complex
adaptive social systems. We have a few goals for these explorations. First,
and foremost, we want to uncover key insights into the behavior of
complex adaptive social systems. We want to understand the behavior
of both the agents within the systems and of the systems themselves.
Second, we want our models to be as simple and accessible as possible.
While simplicity is always a goal of modeling, here we are willing to
err on the side of too much simplicity if it makes the resulting models
more accessible to readers. At times, we forgo some research possibilities
that, while interesting to specialists, would tend to obscure the work
to others. One advantage of seeking such a deep simplicity is that it
encourages coherence across all of the models and, in so doing, may
allow a more general picture of these types of systems to emerge. Finally,
in the models that follow we rely on a variety of analytic techniques
(including computational modeling, mathematical proofs, and thought
experiments) both to enhance our understanding and to demonstrate a
range of analytic possibilities.

91
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C H A P T E R 7

A Basic Framework

Now what, monks, is the Noble Eightfold Path? [It is] as
follows: right view, right intention, right speech, right action,
right livelihood, right effort, right mindfulness, right
concentration.

—Magga-vibhanga Sutta

A foolish consistency is the hobgoblin of little minds, adored
by little statesmen and philosophers and divines.

—Ralph Waldo Emerson, Self-Reliance

Complex adaptive social systems are composed of interacting,
thoughtful (but perhaps not brilliant) agents. Given this underlying
structure, models of these systems, especially those that rely on agent-
based objects, tend to confront a common set of issues. In this chapter,
we discuss some of these issues in hopes of illuminating the core modeling
elements and building some overall coherence. We make no presumptions
that the modeling paths we suggest here are inherently superior to other
possible approaches, and we suspect that there are likely to be many
productive alternatives.1

Given our focus on interacting systems of agents, it would be nice to
have a simple framework from which to discuss such systems. As we
show here, what appears at first to be a simple task is fraught with
difficulty. Indeed, it is easy to have a beautiful eightfold way collapse
into nothingness. That being said, such a destructive transformation is
insightful and we will proceed apace.

7.1 The Eightfold Way

Our task is to think about how to classify agent models. With the obvious
apologies in advance, the Noble Eightfold Path from Buddhism may not
be a bad place to start. The elements of the Eightfold Path can be mapped

1The study of complex systems is often conflated with the art of constructing agent-based
models, and while agent-based models are a valuable tool for understanding complexity,
other tools like mathematics and thought experiments are also needed in this quest.
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Table 7.1
An Eightfold Mapping of Agent-Based Object Models

Path Focus

View Information and connections
Intention Goals
Speech Communication among the agents
Action Interaction
Livelihood Payoffs
Effort Strategies and actions
Mindfulness Cognition
Concentration Model focus and heterogeneity

to key modeling issues in complex social systems (see table 7.1). As in any
metaphorical mapping, sometimes the alignments prove tight, and other
times we must resort to broad interpretations to maintain relevance.

7.1.1 Right View

Right View encompasses the information that an agent receives from
the world. Such information can influence agents in both direct and
indirect ways. Directly, incoming information will often cause an agent to
immediately react to what was received by taking some action. Indirectly,
information is often “memorized” via some change in an agent’s internal
state, and such changes may set the stage for actions that will only
become realized far into the future.

Much of the potentially interesting science of view is in its infancy. For
example, as Herb Simon pointed out, agents typically confront a wealth
of information, and thus the scarce resource here is not information but
rather attention. Given the inherent limits of information processing,
agents must actively ignore most of the potential information that they
encounter. We are typically not aware of how much information we
ignore, though on occasion it does becomes apparent; for example, when
we drive a car into an intense rainstorm, the amount of information
available to us is often dramatically curtailed, yet we typically are able
to continue to drive onward with only limited compromises on speed
and safety. It may even be the case that agents operate more effectively
with less information. We suspect that a full analysis of how agents
selectively attend to information will provide some interesting scientific
opportunities.

Agents typically supplement information garnered from outside with
internally generated information. For example, agents may develop ways,
such as statistics, to summarize the flow of incoming information so that
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it is easily stored and used. Alternatively, agents may generate elabo-
rate internal models that allow them to transcend inherent perceptual
limitations. For example, internal models allow you to visualize what is
currently behind you, even though you have had very little recent visual
input about that scene; or to recognize that an object, even when it has
been obscured by a curtain and cannot be seen, still exists (a skill that
develops at around nine months of age in humans).2 Another use of
internally generated information is to produce “would-be” worlds that
may become important in the future. It is likely that there is an optimal
amount of such “daydreaming”—too little and not enough information
about what could happen will be generated, and too much and poorly
anchored fantasies will begin to run amok.

A further complication is that the inputs that agents receive often come
from other agents. As such, agents may be able to manipulate, at least
partially, their outputs so as to influence the actions of others. As we
will see, models where such manipulation is possible can lead to very
interesting behaviors.

Networks may also be important in terms of view. Many models
assume that agents are bunched together on the head of a pin, whereas
the reality is that most agents exist within a topology of connections to
other agents, and such connections may have an important influence on
behavior.

In many of the models that follow, we make fairly direct assumptions
about how the information flows and is perceived by the agents. The
timing of the information flow can be important—what agents know
and when do they know it can make a big difference to the outcome of
a social process, and some of the models that follow explore this issue
explicitly.

7.1.2 Right Intention

Right Intention focuses on the goals of the agents. In some models, agents
are assumed to have a set of explicit, well-defined goals that direct action.
In other models, goals are built in implicitly, such as in models of biology
in which agents survive and reproduce only if they are able to acquire
sufficient resources from the environment.

By manipulating an agent’s intention, we can obviously put in place
strong forces on the model’s behavior. Of course, the most interesting
results come about when the outcome of the model is, at some level,
at odds with the induced motivations of the agents—to use Schelling’s

2Magicians artfully manipulate internal models designed to assist perceptual tasks by
“misdirecting” observers using cues as simple as the pointing of a finger.



December 7, 2006 Time: 10:02am chapter07.tex

96 • Chapter 7

terms, when the micromotives and macrobehavior fail to align. Thus, it is
far more interesting to see cooperative behavior emerge when the agents
are self-interested than when the agents are presumed to be altruistic, or
to see agents aggregate into cities when their goal is to be left alone.

Along with agent intentions, we often have desires for the system as a
whole. In social systems, we may want the agent behavior to aggregate
in such a way that the system achieves some goal. For example, we may
want market trade to result in efficient outcomes, political systems to
create socially productive and fair policies, and so on.

7.1.3 Right Speech

Right Speech accounts for the information that agents send to others.
Agents can send information to other agents by taking observable actions
or, more explicitly, by using some communication channel. Models
can differ in terms of the kind of information that is allowed to be
communicated, how that information is allowed to flow among the other
agents, and the quality of the information.

We know that communication is an important feature of all kinds
of complex adaptive social systems, ranging from molecular signals
that control cellular functions to the wording of international treaties
that control global relationships among nations. The foundational work
of Shannon (1948) in information theory provided a sound basis from
which to think about very primitive issues in communication, yet these
results only begin to provide insight into the actual complexities and
applications of communication in the world around us.

Agent-based models offer some interesting opportunities to explore
the notion of communication as a way to organize complex systems.
Using such models, we can begin to explore “strategic” communication
in which agents must decide what to say to others and how to react to
what others say to them.

7.1.4 Right Action

Right Action embodies all of the interactions that occur among the
agents. Each agent receives and processes information and, by its action
(or even inaction), generates information that influences the other agents
and the system itself. Such interactions depend on the “space” within
which the agents are contained. This space could be defined by physical
realities, like having the agents arrayed around the perimeter of a circle
or by more abstract entities such as “friendship.” Whatever the form of
the space, it can mediate agent interactions by constraining the flow
of information and action, such as when we only allow agents to interact
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within some well-defined neighborhood. Space is often endogenous in
a system; for example, agents may prefer to interact with “friends,” and
over time the interaction possibilities may change as previous interactions
alter the space of friends.

In some models, agents are assumed to gather input, process it, and
act, simultaneously. In these models, some external synchronization
device must coordinate the behavior of the agents. The amount of
synchronization in real social systems probably varies dramatically.
There are some external and normative mechanisms that do coordinate
individual behavior. Thus, each morning individuals awake and choose
clothing for the day, and this choice is more or less simultaneously
revealed to others throughout the day. Social functions, like pot luck
dinners or bringing gifts to a birthday party, have a similar flavor.
Social systems also embrace institutions that coordinate behavior, such
as sealed-bid auctions with fixed clearing dates or national election days.

Agents can also activate asynchronously. Under asynchronous
activation, each agent awakes at a different time, processes whatever
information is currently available, and then by its action alters the
informational ether that will face the other agents when they are
activated. Asynchronous activation requires that the agents be placed
in some activation order. One way to order agents for activation is
randomly (either with or without replacement); alternatively, agents
could be ordered by some exogenous or endogenous characteristic. Thus,
agents could be activated by, say, their location in physical space, such
as we see when, say, canvassers go door-to-door seeking signatures
for a petition, or by some other characteristic like age or seniority.
Alternatively, we can activate agents based on incentives (Page, 1997).
Under this mechanism, agents activate when they have an incentive to do
so, for example, when the quality of their current situation deteriorates
past some preset threshold or the value of changing exceeds some cost.

Experiments with different systems indicate that the type of updating
can make a big difference to the outcome of the model, so the choice must
be well informed. Sometimes, the choice can be guided by the realities of
the actual system we wish to model. At other times, when the choice is
more amorphous, alternative mechanisms need to be applied so that the
dependencies of the model can be clearly identified.

7.1.5 Right Livelihood

Right Livelihood concerns the payoffs that accrue to the agents. Payoffs
can arise via the pure “physics” of the model, where actions aggregate
to change the world in such a way that the resulting outcomes provide
some benefit to, or impose some cost on, the individual agents. Of course,
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agents also have the ability to change the physics of the world by
co-creating new opportunities for payoffs—for example, when they make
a zero-sum bet on some outcome.

Payoffs can play many roles in these types of models. By assuming that
agents have the goal of improving their payoffs, modelers can impose
a lot of structure on the behavioral possibilities of the agents. We may
also want to use payoffs as a way to drive adaptation by letting agents
reproduce based on their performance. Payoffs can also be used to
determine the activation order for agent updating.

7.1.6 Right Effort

Right Effort embraces agent strategies and actions. One feature that
makes social science particularly interesting, and difficult, is the way
in which agents anticipate and react to the potential behavior of other
agents. Strategies can take many forms, from simple-fixed heuristics to
elaborate optimization routines that change over time. Even these types
of categories are not always well defined. For example, the fixed rule
being employed by an agent to guide strategic behavior may be the result
of an elaborate and complicated optimization procedure.

In many contexts, people do appear to be following rules (see, for
example, Camerer, 2003). While the idea that we do the best we can
given our constraints has great intuitive appeal, it is equally compelling to
think of individuals as relying on simple to moderately involved heuristics
that tend, in general, to result in “good” outcomes. Such heuristics may
go wrong at times, and indeed a lot of work in the area of behavioral
decision theory is focused on finding situations where normally useful
rules go bad. After all, to err is economic.

There are many reasons why people may exhibit less behavioral
plasticity, and therefore less sophistication, than is commonly assumed by
rational choice theorists. First, as long as a rule satisfices, agents may not
see the need to change. Second, people may lack the ability to infer causal
relationships between actions and outcomes. Causal inferences become
increasingly more difficult the more complex the environment or the less
exposure an individual has to the particular decision scenario. Finally,
if events transpire quickly, such as in a standing ovation or a riot, there
is just not sufficient time to contemplate an optimal strategy and agents
may follow existing, or make up new, behavioral rules.

While we believe that rule-following behavior is an important element
of human systems, there is ample middle ground. Humans have the
capability to be extremely thoughtful and careful in their decision
making, and it may be the case that on some decisions, perhaps
investing money or buying a house, decision making is consistent with
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a utility maximization framework. However, in other choice contexts
like proposing marriage or participating in revolutions, humans may rely
more on intuitions, emotions, and gut instincts.3

Within the set of possible rules that agents might use, some rules are
simpler than others. Rules like those used in, say, Conway’s Game of
Life (see Gardner, 1970) are easy to understand and execute, while those
in, say, Samuel’s (1959) checkers-playing program are much harder to
comprehend, even though they both can run on the same computer.
Of course, ease of execution is not a good metric for the amount of
intelligence a rule embodies, as brilliance is often sublimely simple.
For example, the careful optimization and recursive thinking that lie at
the heart of much of game theory often result in strategies that take the
form of very simple behavioral rules. To illustrate this point, consider
participating in a second-price (also known as a Vickery) auction in
which a good is sold to the highest bidder at a price equal to the second-
highest bid. The optimal strategy in such an auction is to bid your true
value for the good—a very simple rule, but one that arises only after some
clever strategic thinking.

More generally, in a reasonable class of games we can construct a
best-response correspondence, BR(X), that maps the actions of the other
agents, X, to a best action. Such a correspondence provides a fixed
rule—if my opponents do X, then I should do BR(X). Thus, fixed-
rule-following agents may arise from hyperrational strategic thinking.4

Indeed, if we allow agents to have arbitrary beliefs over what others
might be doing, then it becomes possible for almost any behavior,
including fixed rules, to be recast as optimal given some set of beliefs.5

Thus we see how at the extremes of behavior—ranging from mindless
rule-following to sophisticated optimization—agents embrace fixed rules.
Agents that follow rules may do so either because they are simple or
transcendent. It is when we move in between these two extremes that
we find ourselves in a world of messy, and perhaps even sophisticated,
computations. For example, models of learning from psychology (such
as Hebbian learning [Hebb, 1949] and neural networks [Hopfield,
1982; Kuan and White, 1994]) and economics (like quantal response
updating [McKelvey and Palfrey, 1998] and experienced weighted utility
[Camerer and Ho, 1999]) rely on many moving parts and substantial

3Alas, even the notion of “gut instincts” is not as simple as it appears. In vertebrates
the gut is controlled by the enteric nervous system, which is relatively localized and
autonomous, and appears to rival the spinal cord in terms of complexity and function.

4As we know from the Game of Life, a system composed of fixed-rule-following agents
does not guarantee the existence of an equilibrium. Even if equilibria exist, convergence
depends on the response functions being smooth and not overly steep near the equilibria.

5Ledyard (1986) proves a related result for Bayesian equilibrium.
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computations. This suggests an imperfect correlation between the intelli-
gence and strategic sophistication of an agent and the observable level of
computation employed by that agent. It also implies that we may need to
enter a messy domain if an accurate representation of agent behavior is
needed to model the world successfully.

7.1.7 Right Mindfulness

Right Mindfulness is the level of cognition employed by an agent: how
smart should agents be? It is true that most agent-based models rely on
simplistic agents, and people are often more sophisticated. Of course,
as the evidence from behavioral economics mounts, it also appears
that people are often less sophisticated than most game theory models
assume. More likely than not, the sophistication of the agents is context
dependent, and in some situations attempts at optimization predominate,
while in others simple heuristics are employed. Indeed, agents may vary
their cognitive commitment to the task at hand, and such heterogeneity
may be an important driving force in the world. The important question
is not whether agents are boundedly rational per se, but rather when and
how does this make a difference.

The mindfulness of social agents differentiates them from physical
agents. Social agents often have mental models that they use to inform
their behavior. Moreover, unlike physical agents, there is a plasticity in
social agents who can change how they behave if outcomes are not to
their liking. The rates and mechanisms of change may well depend on the
system. An individual human agent can conduct a “thought” experiment
and rapidly alter her behavior, while a lower-level biological agent may
be destined for much slower changes via less direct mechanisms like
natural selection. In contrast, bosons, quarks, electrons, and atoms, at
least as far as we know, cannot change their rules modulo quantum
fluctuations.

Ultimately, there appears to be no context-free answer to the question
of how smart should we make our agents. Complex social systems
models do—and should—vary in the level of sophistication embedded
in the agents. There are models like the Game of Life where agents
are given no ability to think or strategize, and the scientific exploration
surrounds understanding how these rules result in productive, macrolevel
properties—in short, how the simple can create the complex. There is
another branch of work, for example the Double Auction Tournament
(Rust, Miller, and Palmer, 1992, 1994) and the annual Trading Agent
Competition (Wellman et al., 2003), where extremely sophisticated
agents, often designed by teams of scientists over months or years to
embody either actual or idealized human behavior, lie at the core of
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the analysis. This work seeks to find the regularities arising from such
systems—how the complex can create the simple.

Recall that there is no requirement that the elements of a model
match the elements of the system being investigated. That being said,
agent-based computational models do allow us to create agents that can
begin to emulate the behavior of humans. Of course, even this goal is
problematic as it is doubtful that we can fully specify the “behavior”
of a human. One problem is that it is often difficult to glean strategic
behavior from simple observations. For example, a person cooperating
in the Prisoner’s Dilemma game might unthinkingly do so because she
just wants to be nice or might be a highly intelligent and strategic
thinker optimizing self-interest based on her reading of Kreps et al.
(1982). Even the notion of a level of human rationality is suspect, as
the amount of cognitive attention and commitment likely varies across
individuals and even within one individual across contexts. There is
a long tradition in economic modeling that assumes that people are
identical in their cognition but vary in their preferences. Perhaps the next
advance is assuming variation in thinking across individuals (or choice
domains).

7.1.8 Right Concentration

Right Concentration is the focus of the model—namely, it requires the
model to be just sufficient to capture the phenomenon of interest. Models
always have contexts, and what works well in one context may fail
in another. If we want to understand the essence of cooperation, then
perhaps we ignore network topologies. If we want to understand the
importance of connections, then perhaps we should simplify the domain
of action.

Another element of concentration is the amount of heterogeneity in
the model. Within a given system there can be substantial heterogen-
eity across agents. Many economic models investigate worlds of multiple
agents via a single, “representative” agent. Thus, while there are many
agents in the model, they are all identical. The advent of agent-based
methods allows the investigation of populations of truly heterogeneous
agents. Heterogeneity enters these models in various ways. One method is
to have an “ecology” of agent types, each relying on different behavioral
governing mechanisms. Alternatively, one can use homogeneous agents
but allow differences in histories, information, or underlying characteris-
tics to cause behavioral differences among the agents.

Models of complex systems phenomena should be simple, not com-
plicated. This point often seems to get confused and twisted in various
ways, but the point of modeling—whatever the target—is to simplify an
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otherwise overly complex world. Thus, even when the resulting behavior
is complex, the underlying model should be simple.

7.2 Smoke and Mirrors: The Forest Fire Model

To clarify some of the ideas embedded in the Eightfold Way, we introduce
a simple model of forest fire dynamics. This model provides a nice
example from which to explore various topics, as it is stark enough to
be explained easily yet results in behavior that is subtle enough to be
interesting. Moreover, the model serves as a convenient springboard from
which to explore not only complex systems, but complex adaptive ones
as well. The discussion proceeds by introducing a basic model assuming
fixed, homogeneous rules and from there further developing the model
by introducing additional layers of agent sophistication.

7.2.1 A Simple Model of Forest Fires

Consider a world in which trees grow along a line known as Thunder
Ridge. Each spot on the ridge is suitable for growing a tree. Each spring
there is a fixed probability, g, of a tree sprouting up in an unoccupied
spot. To keep things simple, once sprouted, trees immediately grow to
their full size and remain that way unless disturbed. In the summer,
lightning storms hit the ridge. Each spot on the ridge has a probability f
of being struck by lightning. If a tree gets struck, it catches fire and the
conflagration spreads to all contiguous trees. Empty locations act as fire
breaks, preventing the further spread of the fire.

Table 7.2 illustrates the Forest Fire model. At time period 1, the forest
is empty. During the growth phase (1.G), trees spontaneously arise on the
ridge in locations designated by “t.” During the lightning season, some
trees are struck and set ablaze; thus at time 1.F two trees (designated
by “T”) have been hit. At the start of period 2, the struck trees and
any connected neighbors have been burned to the ground. This cycle of
growth and fire continues over subsequent time periods.

7.2.2 Fixed, Homogeneous Rules

As formulated, this agent-based model is very simple. The agents are
the individual locations. Each agent follows an identical, fixed rule. In
the spring, if your state is currently empty, then change your state to
having a tree with probability g; otherwise maintain your current state.
In the summer, if you are in a tree state, with probability f catch fire
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Table 7.2
A Simple Forest Fire Model

Time Forest

1 - - - - - - - - - - - - - - - - - - - -
1.G - t - t t - t t - t t - - t - - - - t t
1.F - t - t t - t t - t T - - T - - - - t t

2 - t - t t - t t - - - - - - - - - - t t
2.G - t t t t - t t - - - t t - - t - - t t
2.F - t T t t - t t - - - t t - - T - - t t

3 - - - - - - t t - - - t t - - - - - t t

Note: A t indicates a newly grown or existing tree and a T designates a tree struck by
lightning.
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Figure 7.1. Tree production in a Forest Fire model with f = 0.02 and
homogeneous, fixed rules.

or catch fire if any contiguous trees have caught on fire. Once an agent
catches on fire, it reverts to the empty state.

Despite its simplicity, this model yields some provocative results.
Define production of the forest as the average number of trees standing
at the end of the summer. Figure 7.1 plots the production across various
growth rates in a forest with one hundred locations and a lightning
probability of 2 percent. Production peaks at a growth rate of 43 percent.
The changes in production as growth rates increase is the result of
two countervailing forces. The first force is the growth rate itself—as
it increases, the more likely that vacant spots are occupied by trees and
the greater the potential productivity of the forest. The second force is
lightning. As lightning increases, the more likely it is that a tree will be
destroyed by fire. Moreover, lightning not only impacts individual trees
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but contiguous stands of trees. Thus, the density of the trees becomes
important. At high growth rates, almost all the trees are contiguous, and
all it takes is one strike to bring down the entire forest. This implies a
trade-off between these two forces: faster growth means more trees, but
more trees imply larger contiguous collections of trees, which promote
larger fires.

A two-dimensional (think about trees growing on a checker board)
version of the model displays a much more dramatic connection between
production and growth. In such a model there is a very dramatic change
in production as growth rates are altered.6 In physics terms, such a
dramatic change is known as a phase transition, and it can be shown
(via percolation theory) that there is a “critical value” of g that results
in the system going from a largely disconnected collection of trees to one
in which all the trees are connected together as one.

7.2.3 Homogeneous Adaptation

We now extend the model by considering agents that adapt their rules in
a homogeneous manner. We can interpret such homogeneous adaptation
as group selection among homogeneous, fixed-rule models. Imagine a
collection of forests, each of which has a different growth rate. We
impose selection on the system by allowing those forests with higher
productivity to survive and those with lower productivity to be killed off
and replaced by new forests with random growth rates. Such selection
could come about due to natural processes or, in the case of our forest,
through the behavior of the U.S. Department of the Interior or some
logging company. Over time, such a selection operator will concentrate
the forests on those growth rates that lead to high productivity.

In the case of our model, we would expect that selection would push
the forests to the critical value of g. In our basic Forest Fire model,
production as a function of growth rate is single peaked, achieving a
maximum at 43 percent. In such a well-behaved world, all sorts of
selection algorithms—from hill climbing via local steps to more elaborate
evolutionary methods—should quickly converge to the optimum.

The adaptive solution to the model has an interesting implication: the
system adapts to a precipice. Recall that the maximum productivity of
this system is associated with a critical value and that such values imply
that small deviations can result in a substantial decrease in yield.7 Thus,
adaptation leads the system to a state that is both optimal and fragile.

6In the one-dimensional model shown in figure 7.1, production tapers off only gradually
on either side of the optimal value.

7This effect is most dramatic in systems with more than one dimension.
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In chapter 8 we discuss, and hopefully provide a bit of needed perspective
about, the ideas of “evolution to the edge of chaos” and “self-organized
criticality.” The result here has a similar flavor to these ideas; adaptation
leads the system to a very interesting state that is rich in performance yet
rather exposed—nothing ventured, nothing gained. Indeed, the potential
for adaptation to drive systems to such a precipitous state is a compelling
reason for why adaptation matters in complex systems.

7.2.4 Heterogeneous Adaptation

We extend our model yet again by allowing individual agents to differ
in their growth rates. Here we allow agents to select their initial growth
rates independently and then adapt them individually. A priori, we should
not necessarily expect this model to adapt to the critical value. The system
might be too complex, with a tangle of shifting growth rates resulting in
an incoherent structure that is impossible for any of the agents to exploit
in a productive manner. Alternatively, the system might develop enough
structure so that the agents can find productive niches, yet even here
the resulting structure might be dramatically different from the uniform
growth rates seen earlier.

To construct such a model, we first let each location begin with a
randomly assigned growth rate. In each period, we then allow each agent
to adjust its growth rate, using the following rule: if a tree on the site
would have burned down, then decrease the growth rate; otherwise,
increase it. Thus, the agents are in essence conducting a hypothetical
experiment at each time period of the form, “If I would have produced a
tree, would that have been a good thing or not?” If it would have been
a good thing, then increase the growth rate; otherwise, decrease it.

Figure 7.2 shows the mean growth rate of the population over
time under heterogeneous adaptation. Initially we see that the mean
growth rate declines and falls well below the critical value found in
the homogeneous model (43 percent). Eventually this decline reverses
itself and the mean growth rate rises and stabilizes at a value (around 59
percent) that exceeds the homogeneous critical growth rate. Throughout
these changes in growth rates, forest productivity is steadily rising and
eventually settles at a value above the “optimal” value found in the earlier
model (production eventually reaches over 65 percent versus our earlier
maximum of 58.5 percent).

Clearly, something different is happening in the model with hetero-
geneous adaptation. To unravel this mystery, we need to investigate
the individual growth rates that arise. Table 7.3 shows a representative
section of the forest in the later stages of adaptation. Note that the
growth rates show an interesting spatial structure: groups of contiguous,
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Figure 7.2. Mean growth rate in a Forest Fire model with f = 0.02 and
heterogeneous adaptation.

Table 7.3
Heterogeneous Adaptation in a Forest Fire Model

Location 1 2 3 4 5 6 7 8 9 10 11
Growth Rate 1.00 1.00 0.00 1.00 1.00 0.99 0.00 0.01 0.99 1.00 1.00

high-growth-rate agents are bounded by agents with very low growth
rates. Thus, we see that the system has evolved fire walls and, by doing
so, has increased overall production above what was possible with a
uniform growth rate. This clever solution arose without any kind of
central planning and without intent on the part of the individual agents;
in Adam Smith’s (1776) words, each agent was “led by an invisible
hand to promote an end which was no part of his intention.” This is
a nice example of “emergence” in which an unexpected, higher-level
phenomenon arises from lower-level interactions.

Note that the incentive structure we had in place—mediated by the
adaptive mechanism—facilitated the development of fire walls. From an
economic point of view the resulting solution is an odd one, especially if
we assume that having a tree on your site is better than not having one.
In particular, the agents that become fire walls provide a very valuable
service to those agents that grow trees, yet they are left with nothing.
This arises because it is precisely the fire wall agents that are the most
vulnerable to fires, as they separate two very fire-prone areas. Given
our adaptive system, once the spatial structure begins to form, the fire
wall agents will have their growth rates driven to zero, while the
neighboring agents will have their growth rates increased. Of course, a
“farsighted” fire wall agent could circumvent the adaptive mechanism
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by recognizing that by setting its growth rate to one, a neighbor would
be forced to become a fire wall.

The dynamic system we have explored is fairly typical. Existing sets
of behaviors create outcomes that then feed back on those behaviors,
creating new outcomes, and so on. Here we see an elaborate dance of
behaviors and outcomes, leading the system through a variety of modes
and eventually settling down to an equilibrium in which the model
resembles a fixed-rule model (but, with heterogeneous rules). In the
preceding case, we get behavioral closure that results in an equilibrium.
Of course, here we generated the closure through adaptation rather than
assuming it outright. This notion of growing it to show it (or, in Epstein’s
[1999] parlance, generative explanations) may be a nice addition to the
desiderata of modeling.

The above exploration begins to hint at why adaptive social systems
can fundamentally differ from mere physical systems. Physical systems
typically rely on fixed rules, and as we saw in the initial model, such
rules may indeed lead to complex behavior. However, adaptation tends
to place the system in more interesting regions of that space. Moreover,
in adaptive social systems we find that the agents’ rules often respond to
the phenomena that they generate, creating multiple layers of feedback
that result in a diverse set of emergent behaviors, both for the agents and
the system at large.

7.2.5 Adding More Intelligence: Internal Models

As a next step, we allow our agents to construct internal models of
the system—the fire in the mind. Agents make assumptions about the
growth rates of their neighbors and try to set optimal growth rates, given
what their neighbors are doing. While the strategy used here is much
more sophisticated than the ones used in the previous models, there is
no guarantee that it leads to a better solution. It could be that more
sophisticated agents result in poorer coordination.

For the moment, consider equilibria where each agent’s growth rate is
either zero or one. This system has multiple equilibria in the sense that
a variety of growth-rate sequences result in agents having no incentive
to alter their behavior. Some of these sequences are better than others
in terms of system productivity. Moreover, from an individual agent’s
perspective, equilibria where it produces a tree are better than those in
which it serves as a fire wall.

Different internal models will impose different behavioral dynamics
on the system. These dynamics result in basins of attraction that will
lead any member of that basin to a particular outcome. The issue of
the effectiveness of any given learning rule can be recast in terms of how
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Table 7.4
Optimal Growth Rate Distribution in a Heterogeneous Forest Fire Model

Location 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Growth Rate 1 1 1 1 1 1 0 1 1 1 1 1 1 0

the implied basins of attraction map to the various equilibria. A sophis-
ticated rule could be too greedy and create relatively large basins for the
low-yield equilibria. For example, agents, in trying to ensure that they
are trees rather than fire walls, may force the system into a perpetual
muck in which too many trees are chasing too few fire walls. Lowering
the intelligence of these agents might avoid such a dismal fate (as we saw
in the case of heterogeneous adaptation).

The idea that imperfection is a productive way to navigate multiple
equilibria has been shown in many contexts, such as in simulated
annealing. This research indicates that allowing mistakes (especially if
they are not too costly or occur early in the search process) helps systems
escape less productive outcomes and converge on more productive ones.
Less perfection is often more in these types of systems.

7.2.6 Omniscient Closure

Finally, consider a version of the model with omniscient agents. The
first question is whether they can achieve the optimal configuration. This
requires that the agents can compute the optimal configuration and, once
found, get there and stay there. For our 2 percent fire rate, we conjecture
that the production-optimizing configuration consists of groupings of six
locations with growth rates of one separated by locations with growth
rates of zero as shown in table 7.4.

Of course, omniscient agents are not necessarily driven by global
optimization. If an agent only obtains value by producing a tree, then
that agent would never pick a growth rate of zero, and we will never end
up at a production-optimizing equilibria. However, if having a tree burn
is worse than not having a tree at all, we can show that the production-
optimizing outcome is a possibility with omniscient agents. If the agents
all cared a great deal about equity, and side payments were allowed,
then the homogeneous outcome at the critical growth rate emerges as
the equilibrium.

For the sake of argument, suppose that the configuration in table 7.4
was the omniscient outcome. Given this, how does this outcome compare
to the one we found with heterogeneous adapting agents? First, the
former model evolved via an observable dynamic process with initial
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growth-rate fluctuations resulting in an overabundance of fire walls
that are only slowly, and imperfectly, eaten away. Second, the adaptive
solution has locally stable, but not globally optimal, outcomes with
contiguous tree growers in variable-sized groups with from one to six
agents, separated by one or even two fire walls, whereas the omniscient
solution embodies an elegant symmetry.

The comparative elegance of the omniscient closure model is appeal-
ing, but more than likely difficult, if not impossible, to attain in reality.
Even if agents could conceive of such a clean solution, the coordination
required to jump to it may not be possible. Alas, agents are often left
fumbling toward ecstasy, especially in worlds with even a modicum of
realism.

7.2.7 Banks

The various transformations of the Forest Fire model demonstrate how
we can take a complex systems model and turn it into a complex adaptive
social systems model. In the initial model, trees and lightning followed
a limited set of fixed rules and did not adapt their behavior. We then
introduced adaptation based on selection. By the end of the exercise,
trees were embodied with much more cognition, and we might eventually
contemplate a system whereby the trees begin to reason “I’d better grow
more slowly, as the current El Niño portends an increase in lightning next
summer.”

As we add adaptation to the Forest Fire model, we can begin to
extend its applications to more social phenomena, such as bank failures,
the spread of human diseases and computer viruses, and the spread
of information. Consider the case of bank failures. Such failures can
cause widespread economic disaster, as was seen in 1997 when a cascade
of financial-system problems devastated a number of Southeast Asian
economies or when in 1998 the Federal Reserve organized a $3.5
billion dollar bailout of Long-Term Capital Management to prevent a
failure cascade that could have reverberated across the world’s financial
markets.

In a Bank Failure model, each tree (the “fuel” for the fires) is
analogous to a risky loan extended by a bank, and the topology of the
forest represents connections between banks mediated by correlated risks
among their loans.8 To complete the analogy, lightning strikes represent
loan defaults, and spreading fires capture the cascades of resulting bank

8Actual interbank relationships create a much more elaborate topology of interaction
than what we consider here, but accounting for this requires only modest changes in the
model.
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failures as loan calls between banks go unanswered. Regeneration is the
tendency for banks to make new loans.

Model transformations can sometimes be quite subtle. For example,
consider a model of agents who can either stay in the country or move to
the big city. If they move to the city, they meet up with any kinfolk and
remain there unless they, or anyone they know, gets mugged, in which
case they move back to the country. You can picture the dynamics of
such a model, with agents moving back and forth between the city and
country, muggings, and so on. While on the face of it such a model would
appear to require a completely different apparatus than that developed
here, in fact it is isomorphic to our Forest Fire model, with the growing
of a tree being equivalent to an agent moving to the city, fires becoming
muggings, and neighboring trees giving kin connections.

7.3 Eight Folding into One

Notwithstanding the tidy taxonomy presented in section 7.1 (or any
taxonomy for that matter) or the various explorations of the Forest Fire
model in section 7.2 (or any other model), there is a fundamental problem
in classifying and characterizing any agent-based computational model—
namely, at the deepest level all such models have a similar formulation,
and it is only the observer’s frame of reference and understanding that
differentiates them in any real sense. Alas, at some levels our noble
path can easily collapse into nothingness. The reason for this is that
all of the models we focus on are ultimately embodied as a fixed,
nonstochastic algorithm.9 As such, at the deepest level there is no
adaptation, heterogeneity, space, and so forth inherent in these models,
just a fixed rule going through its paces being interpreted in various ways
by an observer.

There is a universality among computational systems in which, once
a certain threshold is passed, each such system is capable of performing
the other’s computations.10 Thus, balls colliding with one another on a
billiard table, suitably arranged and interpreted, can perform the same
computations as a supercomputer or any possible agent-based model.
This implies that it is possible for a dumb system (colliding billiard
balls) to emulate a smart one (sophisticated agents interacting in a social
system).

9Even randomness in these models is induced via a pseudorandom number generator
that is fixed modulo a seed.

10Wolfram’s (2002) principle of computational equivalence uses this idea to claim that
things can only get so complex—once you make it over the threshold, you are only as good
as the next guy.



December 7, 2006 Time: 10:02am chapter07.tex

A Basic Framework • 111

Table 7.5
A Simple, Nearest-Neighbor Cellular Automaton

Input State Output Choice

000 0
001 0
010 1
011 1
100 0
101 0
110 1
111 1

Of course, this universality requires that we know how to set up the
initial conditions and how to interpret the states. For most problems, it
is likely to be extremely difficult to derive suitable initial conditions that
will carry out the computation. Even in those cases where we know the
initial conditions and all of the rules that govern the dynamics, we may
still not be able to predict or understand what will happen to the system.
As we move away from being omniscient observers, the system becomes
increasingly complex and adaptive.

To illustrate some of these ideas, we consider the behavior of a simple
cellular automaton. In such a model, two-state agents (for simplicity,
agents can either be in state 0 or 1) are arrayed around a circle. At each
time step, agents look at their own state and the states of their nearest
neighbors and, based on this information, determine their next state. We
can capture this behavior in the form of a rule table like that shown
in table 7.5. A rule table is a mapping from each possible input state
to an output state. Here, the input state is ordered by the state of the
left neighbor, the agent, and the right neighbor, respectively. The rule in
table 7.5 implies that the agent will ignore the actions of its neighbors
and just repeat its own state at each time step. If all the agents use this
rule, the system locks into a fixed, repeating pattern that is directly tied
to the initial configuration of the system.

From the perspective of an omniscient observer, this system is rather
dull. A group of homogeneous agents, using fixed rules, immediately lock
into a deterministic pattern, which is directly tied to the initial conditions.
Of course, even this “boring” behavior can be imputed with meaning;
for example, this system could be interpreted as a decentralized storage
device that remembers whatever initial state is given to it.

From the perspective of agents within the system, the story is a bit
more complicated. Even though each agent’s behavior is based on an
identical, fixed rule, there are really two “types” of behavior linked to
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each agent’s initial state. Agents that begin in state 0, follow a behavioral
program that is determined by the first, second, fifth, and sixth rows of
the rule table, while those in state 1 use the remaining rows. Thus, the
internal state of each agent embraces a very different behavioral program,
and from “one” rule table we see two behaviors. If, by chance, the
internal state changed, then it would appear to a neighboring observer
that somehow the agent has changed its behavior.

Thus, depending on the information available to an observer, we
can interpret the identical system in very different ways. From the
perspective of an omniscient observer, who has access to the agents’
states, rules, and initial conditions, the system is composed of a collection
of homogeneous, fixed-rule agents. From the perspective of an agent
within the system, unable to observe the internal states of its neighbors,11

it looks like the system is composed of heterogeneous agents. Thus, the
frame from which agents are viewed—in particular, the knowledge of
the overall states, rules, and initial conditions—can radically alter our
classification of a system.

To push this latter point just a little bit further, consider the following.
It is known that other rules like that in table 7.5 can have more elaborate
behavior. Thus, by changing three output choices in the table (the bits
for the input states 001, 101, and 111), we get a new rule that Cook
and Wolfram showed to be a universal computer (Wolfram, 2002). Thus,
assuming we can find the appropriate initial condition and interpret
the output, we could emulate any agent-based model with a suitably
sized automaton using this latter rule. Therefore, all agent-based models
could be formulated as a homogeneous, fixed-rule, nearest-neighbor
automaton.

The oneness that results from all of these systems relying on fixed,
deterministic algorithms produces an interesting scientific conundrum. At
the deepest levels, the systems we are interested in could not be simpler;
yet, given our limited observational powers, they still can be filled with
wonder and puzzles. Moreover, all such models are connected to one
another. If we can predict and understand how a universal computer
behaves, then we can predict and understand all agent-based models.

Unfortunately, we know from Turing’s (1937) insights into the Halt-
ing problem that general propositions about universal computers are
undecidable. That is, it is not possible to make general statements
about, say, whether a model based on computational agents will reach
an equilibrium or not. Of course, such general statements may be
asking for too much, and we may be satisfied with knowing the

11We recognize that here internal states are directly observable by neighbors, but for the
sake of rhetorical brevity, we will ignore such a complication.
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answer to such questions for a particular set of systems (which may be
possible); nonetheless, the halting problem does point to some inherent
limits to theory in this domain.

7.4 Conclusion

Our analysis of the Forest Fire model has enabled us to see how different
levels of adaptation can impact behavior. We started with a standard
fixed-rule model and then allowed for successive degrees of adaptation.
During this exercise we saw the emergence of fire walls, which showed
how a collective intelligence can arise without intent on the part of the
agents. The adaptive system generated an efficiency-increasing, though
baroque, solution to the problem at hand. Finally, when we allow
omniscient closure, a starkly symmetric outcome results, though the
actual ability of a real system to generate this outcome is suspect.

There is something far more intriguing inherent in the dynamics
that arise in between the fixed-rule and cognitive closure models. This
interesting “in between” where agents fumble for a solution and out
of this process something both clever and messy emerges is a recurrent
theme in subsequent models.

We also saw how transforming the labels of the Forest Fire model
can allow us to explore something like bank failures. In the example of
country-city migration, we were able to use the same model to account
for a phenomenon that seem to go well beyond simple relabelings. Such
transformation is important for successful modeling, as it allows efforts
in one domain to be conserved and reused, while also identifying some
deeper connections across seemingly disparate systems. The ability to
transform one model into another, and the theorems that imply that all
of these types of systems are intimately connected, suggest that a deep
understanding of a few agent-based models might yield a much broader
understanding of many other social systems.

At the deepest level there is a fundamental sameness about all of these
models, as they all are based on a discrete, dynamic system cycling
through various states. Of course, if we knew everything about how
this latter system behaved, then our task would be considerably easier,
as we would just have to map the primitives of the social systems we
wish to understand to those of the universal system that we understood.
Unfortunately, we do not yet have this deeper understanding of this
universal system; moreover, we know that there are some inherent limits
to theorizing in such a system. Nonetheless, the promise of uncovering
deep connections among apparently disparate complex adaptive social
systems is an important one.
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Complex Adaptive Social Systems
in One Dimension

Be patient, for the world is broad and wide.
—Edwin A. Abbott, Flatland

We begin with a set of very simple models designed to illuminate some
basic issues inherent in complex adaptive social systems. In Abbott’s
Flatland, geometric figures confined to living in a two-dimensional
world gain insight into the third-dimension when a sphere slowly passes
through their plane. The sphere begins as a point, grows into ever
larger circles, eventually reverses its course and returns to a point, and
disappears. After seeing this amazing sequence of activity, the figures
confined to Flatland begin to glimpse the third dimension. Here we
explore some simple models with a similar motivation to Abbott’s sphere,
namely, to provide some useful glimpses into the behavior of complex
adaptive social systems.

Modeling any system is often an exploratory process that requires
both induction and deduction. You begin by making a simple set of
assumptions and see where they lead. From this experience you attempt
to create better models or deduce more exact results. The discussion in
this chapter follows this approach. We begin with a rather stark notion
of a social system of interacting agents and then attempt to direct the
analysis down productive paths. Our goal is not only to illustrate how
such models can be developed and analyzed, but also to create a series
of easily digestible models that embody many of the key concepts and
insights that have been developed in complex adaptive social systems
over the past decade. These devilishly simple models are not some
random stroll through the set of possibilities but contain a significant
malice of forethought.

The agents in the models presented populate a one-dimensional
circular world—for concreteness, consider a world in which agents live
atop a large atoll. Around this atoll we have N sites that can be occupied
by the agents. For ease of exposition, we consecutively number these
sites 1, 2, . . . , N starting from an arbitrary point, and thus the Nth site
completes the circle and abuts site 1. Given this world, we can impose
a natural constraint on agent interactions, namely, that agents interact
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within neighborhoods of contiguous sites. Thus, an agent at site 1 has a
“right-hand” neighbor at site 2 and a “left-hand” neighbor at site N.1

In the initial models, agents must take one of two possible actions
(designated by 0 and 1). Each agent chooses its action using a fixed
behavioral rule. This behavioral rule depends only upon the most recently
observed actions taken by the agent and its designated neighbors. While
this construction is obviously very stark, it is sufficient to demonstrate a
number of the core features that arise in complex adaptive social systems
and computational modeling.

A crucial difference between models of complex social and physical
systems is in our assumptions about appropriate behavioral rules. Quan-
tum effects aside, one hydrogen atom acts just like another hydrogen
atom relying on a set of fixed, external physical properties and forces.
Social agents, on the other hand, often alter their behavior in response to,
and in anticipation of, the actions of others.2 The atoms on the bumpers
of two cars about to collide do not alter their behavior; the drivers of the
two cars typically do, albeit a bit late. As a result, social systems have an
additional layer of complication over physical ones, and we must make
sure that the behavioral rules deployed by our agents make sense in this
broader context. We initially explore systems with simple fixed rules to
gain some basic insights and intuitions. Eventually, we introduce more
complex rules that can “change” their behavior over time.

One can often think of complex adaptive systems as having microlevel
agents (in the case of our atoll, “Micronesians”) interacting to create the
global properties of the system. These global properties then feedback
into the microlevel interactions in various ways. Such feedbacks occur
in both physical systems, like earthquakes, and social ones, like stock
market crashes. What differentiates physical systems from social ones
is that agents in social systems often alter their behavior in response to
anticipated outcomes. Rocks on the boundaries of tectonic plates just let
earthquakes happen; people attempt to prevent stock market crashes.

8.1 Cellular Automata

The first model we explore is one in which each agent’s behavior is driven
by the same generic rule. Consider an atoll of size 20, where each site is
occupied by an agent that has two possible actions {0, 1}. We assume that

1We can extend this idea to larger neighborhoods as well. An agent at site 1 has
immediate neighbors at sites 2 and N, neighbors two steps away at sites 3 and N − 1, etc.

2As we discussed previously, even “adaptive” rules are fixed at the deepest levels.
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Table 8.1
A Simple Behavioral Rule

Left Right
Situation Neighbor Self Neighbor Rule 22

0 0 0 0 0
1 0 0 1 1
2 0 1 0 1
3 0 1 1 0
4 1 0 0 1
5 1 0 1 0
6 1 1 0 0
7 1 1 1 0

each agent’s behavior is controlled by the identical rule, and that this rule
uses the most recent action of the agent in question and its two nearest
neighbors to determine the next action. Given that actions are binary,
a fully specified rule will need to map the 8 (23) possible combinations
of actions that the agent and its two neighbors can take, into the agent’s
next action. Because the rule must designate a binary action (either 0 or 1)
for each of the eight situations, there are 256 (28) possible rules that could
direct an agent’s behavior.

Table 8.1 shows the rule table for Rule 22.3 A rule table is a mapping
from each possible input state to an output state. The first line of this
rule table (situation 0) specifies that if an agent and its two neighbors all
took action 0 last time, then the agent will want to take action 0 next
period. The next line (situation 1) indicates that if the agent and its left
neighbor took action 0 and the right neighbor took action 1, then the
agent will want to take action 1, and so forth. In table 8.2 we show
the dynamics of this simple rule. The sites of the atoll are numbered from
1 to 20 moving left to right (recall that the left- and right-hand edges of
the table are connected to one another, so a more accurate representation
would entail forming the table into a cylinder by rolling the outer edge of
the page in toward the binding). At time 0, we randomly pick an action
for each agent. At each subsequent iteration the agents simultaneously
choose their next actions based on the rule in table 8.1 and the actions
observed in the previous time step.

This simple rule results in some interesting systemwide behavior.
As can be seen in table 8.2, coherent macrostructures in the form

3A standard way of referring to such rules is by using the integer equivalent of the bits
that define the rule table. Thus, in table 8.1 the defining bits of the rule table are 00010110,
which can be interpreted as the integer value 22.
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Table 8.2
Dynamics of Rule 22

Time Step Actions

0 11100100000111011100
1 00011110001000000011
2 10100001011100000100
3 10110011000010001111
4 00000100100111010000
5 00010011111000011000
6 00111100000100100100
7 01000010001111111110
8 11100111010000000001
9 00011000011000000010

10 00100100100100000111
11 11111111111110001000
12 00000000000001011101
13 10000000000011000001
14 01000000000100100010
15 11100000001111110111

of downward facing triangles composed of 0s emerge throughout the
diagram. The scale of these triangles goes well beyond the scale of
the behavioral rules. Thus, even though individual behavior is based on
the actions observed at three sites, coherent triangular structures emerge
that encompass far more sites (for example, at time 12 a triangle forms
across thirteen of the twenty sites). Like Adam Smith’s invisible hand, it
is as if the actions of the agents are being coordinated to create patterns
that are no part of any agent’s intention.

While there is some coherence in the outcome, there is also perpetual
novelty. Thus, while the system has a “theme” of a recurring series of
downward facing triangles, their sizes and locations seem to vary across
space and time in such a way that we never seem to see the exact pattern
twice. This latter point needs to be qualified. Our system has only a
finite number of possible states—with an atoll of size 20, there are 220

(a little over a million) possible unique configurations of the agents’
actions. Because the rules are deterministic, any particular configuration
is always followed by the same subsequent configuration. Therefore, if
we run the system long enough (at most 220 time steps), it is guaranteed
to hit the same configuration twice, and once this happens it will begin a
cycle that follows the same path as it did when it first hit the configura-
tion. All finite, deterministic systems are guaranteed to cycle, though the
lengths of these cycles can be relatively long.
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The preceding rule demonstrates how simple, local interactions among
agents can result in interesting aggregate behavior. The rule is just one of
256 possible rules, and an obvious question is whether the behavior we
see in this rule is in some sense generic. The answer is no. For example,
a rule table where each possible situation results in a 1 will immediately
lock the system into an equilibrium where all agents do action 1 after
the first time step. Alternatively, a rule that always has an agent doing
the opposite of what it did last period (that is, having 0s in situations
2, 3, 6, and 7, and 1s elsewhere) will cause the system to alternate back
and forth with each time step.

Wolfram (1984b, 2002) has systematically analyzed the 256 possible
rules and divided their behavior into four classes. Class 1 rules quickly
evolve to a unique, homogeneous state with identical actions across the
agents (as in the “all 1s” rule). Class 2 rules result in separated groups
of simple stable or periodic structures (as in the “do the opposite” rule).
Class 3 rules imply chaotic patterns (the rule in table 8.1 is a member of
this class). Class 4 rules produce complex structures with long transients
(thus, coherent patterns arise that can persist across space and time
for extended periods) that are hypothesized to be capable of universal
computation—that is, able to compute anything that can in principle
be computed (Rule 110 meets this criterion).4 One way to quantify the
above classes is to measure how a random alteration of an action alters
the behavior of the system in subsequent time periods. In Classes 1 and
2, such impacts are minimal, while in Classes 3 and 4 such disturbances
can propagate across vast distances.

Wolfram’s classification scheme allows us to abstract away particular
details of the rules and still make good predictions about aggregate
behavior. There are, however, problems with his classification scheme.
In particular, the outcome of any given rule depends on both its structure
and the initial conditions. It is possible for the behavior of a single rule
to fall into two different classes. For example, in table 8.3 we show
the behavior, under two different starting conditions, of a rule that
copies whatever the left neighbor did last period. The initial conditions
in World 1 lead to Class 1 behavior, whereas those in World 2 place
the rule within Class 2. Rules can also start out in one class (by, say,
displaying a very long transient) and then fall into a different class (by,
perhaps, converging to a low-period limit cycle). Notwithstanding these
difficulties, Wolfram’s attempts at classification represent an important
step in creating more general theories of complex systems.

4Analogs to continuous dynamic systems exist for the first three classes. Respectively,
these are limit points, limit cycles, and chaotic attractors.
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Table 8.3
Copy-Left Rule under Two Different Initial Conditions

Time Step World 1 World 2

0 1111111111 1000000000
1 1111111111 0100000000
2 1111111111 0010000000
3 1111111111 0001000000
4 1111111111 0000100000
5 1111111111 0000010000
6 1111111111 0000001000
7 1111111111 0000000100
8 1111111111 0000000010
9 1111111111 0000000001

10 1111111111 1000000000
11 1111111111 0100000000

8.2 Social Cellular Automata

So far, we have demonstrated how simple systems of interacting agents
modeled by cellular automata can result in interesting behavior. To
convert these automata systems into models of social systems, we need
some additional qualifications.

The first qualification is that we are willing to accept the notion
that all agents employ a common, fixed rule. Many models of social
systems embody such behavior by assuming a single, “representative”
agent. Even when multiple rules across agents are possible, homogeneity
can still arise through a variety of processes. For example, if all agents
optimize the same problem in the same way by, say, adopting a Nash
equilibrium strategy, then their behavioral rules may coincide. Behavior
can also be coordinated by other social forces that may be driven by
optimization. For example, behavior (perhaps due to optimization) from
one circumstance, such as driving on the right side of the road, may be
the basis for behavioral norms in other circumstances, such as veering
to the right when confronting another pedestrian on the sidewalk.5

5While in this case such meme-based hitchhiking serves a useful purpose (preventing
collisions in a variety of circumstances), there could be circumstances where it is harmful.
For example, norms of sharing may improve an agent’s performance in some contexts like
dealing with family members, yet be detrimental in other ones such as one-shot anonymous
social dilemmas. One focus of behavioral decision research is in uncovering key behavioral
heuristics—often by finding circumstances under which they result in wildly maladaptive
behavior.
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Even when all agents begin by using the same rule, mechanisms are
still needed to prevent adaptive agents from deviating away from this
rule. In stable environments, where feedback is consistent with good
performance and expectations, adaptive agents are not likely to want
to change their behavior. In less stable environments, the ability of an
agent to alter its behavior productively depends on a number of factors.
First, the agent must be able to obtain sufficient information from
the observable patterns of behavior and outcomes to formulate more
productive plans, and in some environments such patterns may be very
difficult to divine. Second, the agent must know about other behavioral
possibilities. In later models we explore the behavior of systems with
heterogeneous and adaptive rules, but for the moment we assume
that conditions are such that agent behavior is described by a static,
homogeneous rule.

Another problematic assumption in the preceding model for social
situations is that agents myopically apply their behavioral rules to
the actions observed last period. Thus, either agents are incapable of
remembering and processing more elaborate histories or the actions
of the last period are a sufficient statistic of the past (in essence, they
incorporate all the information needed for predicting the future). A final
qualification is that we assume that the timing of behavior in these
models, namely, that all agents update their actions simultaneously, is
sufficiently close to real systems (or of little consequence to the outcome
of the model). We explore some specific issues surrounding timing later
on in the analysis.

These qualifications are certainly not trivial, though they are well
within the usual bounds of many social science models. Ultimately, our
willingness to entertain them is tied to the value of the subsequent
models.

8.2.1 Socially Acceptable Rules

A key area for refining the preceding class of models is thinking
about socially acceptable behavioral rules. Indeed, by applying some
simple constraints on social behavior we can dramatically reduce the
set of admissible rules. There are many ways we could constrain social
behavior, and we begin by assuming that social agents have some degree
of rationality and are goal oriented. The first constraint we impose,
observational symmetry, is that symmetric observations of the left- and
right-hand neighbors lead to the same action, that is, that agents do
not differentiate between their neighbors. As shown in table 8.4 this
constraint forces the actions taken in situations 1 and 4 to be identical, as
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Table 8.4
Social Symmetries in Rule Tables, Where ai ∈ {0, 1}

Observational Outcome
Situation Left Self Right Symmetry Symmetry Both

0 0 0 0 a0 a0 a0

1 0 0 1 a1 a1 a1

2 0 1 0 a2 a0 a0

3 0 1 1 a3 a1 a1

4 1 0 0 a1 a2 a1

5 1 0 1 a4 a3 a2

6 1 1 0 a3 a2 a1

7 1 1 1 a5 a3 a2

well as those in situations 3 and 6. By imposing observational symmetry,
we go from 256 to 64 possible rules.

Another possible constraint we could impose is that of outcome
symmetry. Assume that each agent shares a strict ordering of the
potential configurations of the actions taken by itself and its two
neighbors, and that each agent myopically believes that its neighbors will
not alter their actions next period. Under observational symmetry, an
agent should not take an action that would lead to different predicted
outcomes when identical ones are possible. For example, whatever
action, a, the agent takes in situation 000 should be identical to the action
it takes in 010, as the agent will myopically predict that it will find itself
in 0a0 next time. The outcome symmetries implied by this constraint
are shown in table 8.4. Note that outcome symmetry is a very strong
assumption, as it requires a strict ordering across the absolute outcomes,
and later we will explore some plausible social models that violate this
constraint.

By imposing both observational and outcome symmetry, we dra-
matically reduce the space of acceptable social rules. The last column
in table 8.4 shows the acceptable permutations under both types of
symmetry. Note that only three binary values are needed to complete
the associated rule table, and thus only eight rules are possible. In fact,
given that we can relabel actions by swapping the 0s for 1s and vice
versa, we only need to examine four rules. In table 8.5 we show these
four prototypical social rules and their canonical names.

These four rules imply very different system behavior. Rule 0 is the
least interesting from a social perspective, as the agents always want to
take action 0 regardless of what their neighbors are doing. Under this rule
the system locks into all agents taking action 0 after the first time step.
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Table 8.5
Symmetry Constrained Social Rules

Situation Left Self Right Rule 0 Rule 5 Rule 90 Rule 160

0 0 0 0 0 1 0 0
1 0 0 1 0 0 1 0
2 0 1 0 0 1 0 0
3 0 1 1 0 0 1 0
4 1 0 0 0 0 1 0
5 1 0 1 0 0 0 1
6 1 1 0 0 0 1 0
7 1 1 1 0 0 0 1

Rule 160 is a bit more complicated as each agent wants to take action
0 unless both of its neighbors are doing action 1, in which case, it will
join them. Plausible social situations for this behavior might include
agents choosing a technology (action 0 or 1) in the presence of network
externalities (where technology 0 has an economic edge ceteris paribus)
or agents forming an agreement and either abiding by it (action 1) or
violating it (action 0). There are three possible equilibria under Rule 160.
If all of the agents start by taking action 1, then they will continue this
action throughout all subsequent iterations, and the system will lock into
all of the agents doing 1. A second possibility is that the system locks
into a configuration with actions alternating 0101 . . . across the sites
(which, of course, requires an even number of sites on the lattice). In
this case, agents will alternate their actions during each iteration, and
the system will cycle back and forth with period 2. This alternating
configuration requires a fairly delicate initial condition consisting of one
or more noncontiguous 0s with distances between them that are even
numbers.6 Finally, if it is ever the case that two or more contiguous agents
take action 0, then during each subsequent iteration the neighbors to
this contiguous group will also take action 0 (and the agents within the
bunch will stay with 0), and 0s will slowly propagate throughout the
lattice, eventually locking the system into all of the agents taking action
0. Note that this last result requires initial conditions with either one or
more groups of contiguous 0s or isolated 0s spaced an odd number of
sites apart. Notwithstanding the three possible equilibria, under random

6To see this, consider a single 0 surrounded by 1s. At each subsequent time step, an
alternating pattern of 01s will propagate out by one. With multiple, noncontiguous 0s,
then these patterns will join up as long as the initial 0s are spaced an even number of sites
apart.
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starting conditions or, say, in the presence of noise, the last equilibrium
of all 0s is the most likely outcome.

Under Rule 5 agents want to take action 0, unless they can be the only
one in their neighborhood taking action 1. Social situations captured by
such incentives might include getting a painful body piercing or investing
in easily appropriated research and development (in each case, the value
of taking the action increases with its uniqueness). Systems controlled by
Rule 5 are characterized by stable (across time steps) bands of 010, with
the gaps between these bands alternating between all 1s and all 0s each
time step. The gaps can be of various sizes, so multiple equilibria are quite
likely in these systems. Thus, the prediction here is that there will be some
stable isolates, where, say, an agent with a piercing is surrounded by two
neighbors without, next to groups of agents that experience “fads” that
alternate between everyone having a piercing and no one having one. The
dynamics of these fads are driven by agent myopia—we might expect that
slightly more adaptive agents would be able to recognize and respond to
the small-period cycles that are observed in the system, though the impact
of such a response is not clear a priori.

Rule 90 often results in exotic behavior. It is a Wolfram Class 3 rule7

and thus can exhibit chaotic patterns that are similar in structure to those
shown in table 8.2 (but with even more complicated “triangles”). Behav-
iorally, this rule models an agent that wants to be in a neighborhood
either with exactly two 1s or none. Such behavior is consistent with the
rules used in Conway’s Game of Life (a model based on two-dimensional
cellular automata), in which an agent becomes alive (action 1) if there
is a parent and sufficient space, and dies (action 0) if the world is either
too crowded or too lonely. A more economically oriented example could
be our atoll inhabitants needing to have access to at least two boats
(action 1) to go fishing with their neighbors.

The preceding analysis indicates that, if we are willing to consider a
sparse and highly constrained model of interactive social agents, we are
likely to observe only four types of generic system behavior. Two of these
systems result in stable and highly predictable equilibria that are quickly
attained by the system. The third system has the possibility of multiple
equilibria, but again the characteristics of these equilibria are generic
and we are likely to observe an easily recognizable two-period oscillating
pattern where bands of agents “overreact” to past information. The final
system is one that is rich in behavior and pattern, though more exacting
predictions are difficult to make.

By putting some sensible, albeit extreme, simplifications on the prob-
lem, we were able to create a very small set of relatively easily analyzed,

7Rule 5 is Class 2, and Rules 0 and 160 are both Class 1.
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Table 8.6
A Nearest-Neighbor Majority Rule

Situation Left Self Right Majority Rule

0 0 0 0 0
1 0 0 1 0
2 0 1 0 0
3 0 1 1 1
4 1 0 0 0
5 1 0 1 1
6 1 1 0 1
7 1 1 1 1

yet interesting, models of interacting social agents. Obviously, we do not
wish to claim that the behavior of all complex adaptive social systems can
be subsumed by one of the four generic types of outcomes we uncovered.
Rather, the work is meant to be illustrative of a style of modeling in this
area and its potential for providing new insights.

In the next sections we develop some alternative models of complex
adaptive social systems. In these models we loosen some of the con-
straints in various ways, so that we can gain insight into the importance
of some of our assumptions as well as investigate new elements of social
behavior.

8.3 Majority Rules

In the Majority Rule model, we assume that agents attempt to take
actions that are consistent with the majority of their neighbors.8 Thus,
each agent will look at all neighbors within a distance of k sites and alter
its action if it is in the minority. In table 8.6 we write down the rule table
for this behavior when k = 1. Notice that this rule is not a member of the
“socially acceptable” class developed earlier, because it violates outcome
symmetry in those situations where neighbors are taking opposite actions
from one another (here, agents are willing to stay with whatever their
previous action was, perhaps due to switching costs, in those cases where
they are pivotal).9 If we impose a preference on the agents by, say, making
them always wanting to be part of a majority and, if possible, having that
be a majority of 0s, then their behavior is driven by Rule 160 discussed
in the previous section.

8This type of model is often referred to as a Voter model in the literature, but we will
use the more exacting term Majority Rule model.

9An agent is pivotal when its choice determines the majority.



December 5, 2006 Time: 10:53am chapter08.tex

Complexity in One Dimension • 125

Table 8.7
Majority Rule (k = 3) with Synchronous Updating

Time Step Actions

0 00111011100111001000
1 00011111111101100000
2 00011111111111000000
3 00011111111111000000

In table 8.7 we show some typical behavior for the model with k = 3,
that is, when agents look to their three left and three right neighbors for
guidance in determining their next action. The dynamics shown in the
table are very typical—the system quickly settles down to a world with
stable blocks of 1s and 0s. As long as there are contiguous blocks of
the same action that are at least k + 1 sites in length, the system will be
in equilibrium, since under this condition every agent has at least k like-
minded neighbors and thus will not want to alter its action. Of course, the
actual number, location, and ultimate size (≥ k+1) of each block depends
on the initial conditions, though, as we show later, there are some useful
statistical regularities to these features. It is possible, although not very
likely, for a periodic equilibrium to occur in this system. If we have an
even number of sites and the initial configuration alternates between 0
and 1, then each agent’s action will alternate from one time period to
the next.

One implicit assumption in the models so far has been that all
agents update their actions simultaneously. As previously discussed,
sometimes decentralized systems of agents might attain high degrees of
coordination through natural or artificial cues such as sunrise (when
many people make clothing choices) or legal mandates like election days.
Notwithstanding such examples, it is easy to imagine situations where
agents take asynchronous actions. Once we allow for asynchronous
actions, we must define an activation order for the agents. Agents can
activate randomly or according to some order driven by spatial location,
endogenous agent characteristics such as age, or even incentives for
taking action.

In table 8.8 we show some sample equilibria under various updating
rules. Each of these rules began with the same initial condition. Under
asynch-location, the agents are updated moving in order from site 1
to site 20. In asynch-incentive, agents with the fewest number of like-
minded neighbors update first. Finally, in asynch-random, agents are
updated randomly with replacement. Under all of the updating rules,
the system reaches an equilibrium (characterized by the previously
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Table 8.8
Majority Rule (k = 3) Equilibria under Various Updating Options

Updating Equilibrium

Initial condition 00111011100111001000
Synchronous 00011111111111000000
Asynch-location 00000000000000000000
Asynch-incentive 00111111111111000000
Asynch-random 00011111100000000000

Table 8.9
Average Number of Equilibrium Blocks

k

Updating Rule 1 2 3 4 5 6 7 8

Synchronous 834 478 342 266 215 178 152 133
Asynch-location 833 358 162 80 41 22 8 4
Asynch-incentive 922 488 307 214 161 143 101 80
Asynch-random 916 492 326 243 196 162 140 123

Note: Equilibrium blocks form when stable configurations of contiguous, identical
behavior, result from the dynamics. The experiment had N = 5,000 and 50 trials.

mentioned stability condition of contiguous, homogeneous actions of size
greater than k + 1) relatively quickly.

Table 8.8 suggests that different updating rules may result in very
different equilibrium outcomes.10 The specific outcomes depend on both
the initial conditions and random elements, so it is hard to make any
useful generalizations without more observations. In table 8.9 we show
the average number of blocks that form in equilibrium across fifty trials
on a 5,000-site lattice under the different updating conditions.

The statistical results provide fodder for a variety of theoretical
explorations. For example, notice that under location-based updating,
each increment of k results in roughly a halving of the number of
equilibrium blocks. A simple explanation for this phenomenon relies on
the following insight: if we are moving down the lattice from left to right
with a homogeneous block behind us, we will start a new block if and
only if the next site we encounter and all k of its neighbors to the right
are taking the alternate action. The probability of this happening with

10This result is consistent with the observations of Huberman and Glance (1993) and
Page (1997).
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randomly generated sites is (1/2)k+1, and thus incrementing k by one
decreases this probability by one-half.

In all of our numerical experiments with this system, we noticed
that asynchronous updating led to a noncyclic equilibrium. We know
that with synchronous updating such equilibria are likely, though it is
also possible to sustain a two-period cycle. Are noncyclic equilibria a
fundamental feature of this system under asynchronous updating?

Claim 8.3.1 Any N-site, k-Majority Rule model with asynchronous
updating attains a fixed-point equilibrium in finite time.

Proof: To prove this claim, let nt
i give the number of neighbors of

site i at the beginning of time t that are taking a different action.
We can construct a (Lyapunov) function, F , that is given by

∑
i nt

i ,
that is, the sum across all agents of the number of neighbors that
disagree with the agent’s current action. Note that this sum is finite
and bounded below by zero. Suppose that at time t, agent i is given
a chance to update. There are 2k neighbors of site i , and the agent
will alter its action if it is in the minority, that is, if nt

i > k. If the
agent is not in the minority, no changes occur on the lattice and the
value of F remains unchanged. If, instead, the agent is in the
minority, the agent will alter its action to that of the majority. In
this case, F will decrease due to two effects. First, the change in the
agent’s action will alter the value of nt+1

j for each agent in the
neighborhood. Those agents in the majority will each have their
differences from neighboring agents decrease by one, while those in
the minority will have their differences increase by one, resulting in
the sum of the differences across all of these sites going down by at
least two (nt

i − (2k − nt
i ) ≥ 2). Second, the agent that altered its

action will have its difference decrease by at least two, as prior to
switching actions its difference was nt

i and after the switch it is
2k − nt

i . Therefore, F must fall by at least four whenever an agent
switches. Because F is both finite and bounded below by zero,
agents cannot switch indefinitely, and thus the claim must hold.

Mathematical and computational approaches provide complementary
insights into this problem. The original computations produced some
very useful observations about how the system behaves, including
insights into the likelihood of equilibria, their form, and the speed of
convergence. More extensive statistical analyses, like those in table 8.9,
suggested new mathematical directions as well as defined the potential
for empirical work on these types of systems (for example, knowing that
a system has, say, 160 blocks in equilibrium may not allow us to recover
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its underlying structure, since such an observation is consistent with k’s
ranging from three to seven depending on the updating mechanism).

Mathematical results solidify some of our computational observations.
Results like claim 8.3.1 nicely formalize some of our computational
intuitions, though they cannot escape the bounds of their assumptions
(here, for example, the claim fails under synchronous updating). Also,
we have been unable to characterize mathematically some of the most
interesting aspects of the system, such as the block formation dynamics
(as seen in table 8.9) or time to convergence. That is not to say that
such things cannot be so characterized, as they may well succumb to
mathematical analysis (though the computational results may suffice for
many purposes). Of course, caution is always needed in interpreting both
computational and mathematical results. Inductive observations about
computational systems and mathematical deductions can be misleading
if we do not carefully consider their underpinnings.

8.3.1 The Zen of Mistakes in Majority Rule

The rules we have considered up to this point have been deterministic. Of
course, rules can also have random elements. Randomness is not solely
within the social domain; for example, neurons fire probabilistically
based upon chemical levels. In social systems, randomness can capture
features like mistakes, experimentation, or the tendency to bias choices
imperfectly.

Note that randomness does not necessarily imply “random” behavior.
Randomness is often a source of order in complex systems. For example,
consider an agent, randomly placed on a rugged landscape, attempting
to climb uphill in a dense fog. If the agent strictly follows an uphill
path, it will quickly get trapped on whatever local peak it started on.
Now, introduce some randomness into the system whereby the agent has
some chance of taking downhill steps during its fog-bound excursion.
Such noise will start to “smooth” out the landscape by “filling in” the
minor valleys that separate local peaks, allowing the agent to transit
the landscape’s minor undulations. Thus, by introducing some noise the
agent will gravitate to the highest peak in the landscape (a very orderly
outcome) rather than becoming trapped in its initial neighborhood (a
very disorderly outcome). The intuitions in this example form the basis
for interesting optimization ideas like simulated annealing.

When we add noise to the Majority Rule model, we get different
results. Suppose that agents who lie between agents taking different
actions make mistakes and that those surrounded by similar agents do
not. In essence, this implies that little mistakes can happen but big
ones do not. Such an assumption is similar to the concept of Proper
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Table 8.10
Majority Rule (k = 3) with Mistakes

Updating Equilibrium

Initial condition 00111011100111001000
Convergence 00111111111111000000
After some mistakes 11111111111110000000
An equilibrium 11111111111111111111

equilibrium in game theory, in which the likelihood of a mistake is
proportional to its costs.

Suppose that we run our Majority Rule model without noise using
synchronous updating until it converges, as shown in the second line of
table 8.10. This configuration is not stable under noise, as the four agents
spanning the two boundaries will make mistakes, in the sense that with
some small probability each may switch its action. These mistakes will
start to eat away at the edges of the long strings of contiguous values.
Eventually, the system will reach a state of either all ones or all zeros, at
which point mistakes will end, and an equilibrium will ensue.

With errors we find that majority rule leads to either all ones or all
zeros. Moreover, if we were to average over all possible initial strings,
then those with an initial majority of, say, ones would be more likely
to converge to the equilibrium of all ones. This occurs because longer
sequences of the majority symbols are less likely to get wiped out due to
mistakes than shorter ones. This simple example shows how mistakes can
be beneficial. Majority rule now performs a function: it indicates (with
some chance of error) whether the initial string had more ones than zeros.

8.4 The Edge of Chaos

The idea of “the edge of chaos” originated with a few simple computa-
tional experiments by Packard (1988b) and Langton (1990) and quickly
became part of the lexicon of complex systems. These early experiments
suggested that systems poised at the edge of chaos had the capacity for
emergent computation. The intuition behind this claim has tremendous
appeal: systems that are too simple are static and those that are too
active are chaotic, and thus it is only on the edge between these two
behaviors where a system can undertake productive activity. In its most
grand incarnation, the edge of chaos captures the essence of all interesting
adaptive systems as they evolve to this boundary between stable order
and unstable chaos.
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The notion of the edge of chaos is both intuitively appealing and
metaphorically rich. While the examples of Packard and Langton are
intriguing—and scientific progress often proceeds from examples, to
ideas, to understanding—they may also be misleading, lacking adequate
logical underpinnings. That said, there remains a grain of truth in the
basic intuition that, loosely speaking, complexity lies somewhere between
order and chaos.

Here we explore the edge of chaos in a simplified framework. Our
goal is to begin to solidify the boundaries of our understanding of this
concept through a more formal analysis. We investigate two questions:
is there an edge and, if so, is it important? If the idea does have merit,
then its impact on our understanding of complex adaptive social systems
could be substantial.

8.4.1 Is There an Edge?

A key first step in understanding whether there is an edge of chaos is
being careful about defining the space that we are exploring. In models
of the edge of chaos, there is an attempt to detect whether a given
rule will tend to imply a system that is either chaotic, stable, or poised
somewhere in between. A casual reading of this statement (without the
added emphasis) often causes the misleading perception that the focus
here is on the implied phase space of the rule rather than the rule itself.

The “edge” in the edge of chaos is not in phase space but in the space
of rules. The idea is that if we slightly perturb a rule that generates
complexity we will get a rule that either generates chaos or stasis.
Therefore, the search for the edge of chaos focuses on how small changes
in a rule impact its behavior.

We discuss the edge of chaos in terms of a one-dimensional, two-state,
nearest-neighbor cellular automata. In such a system, a rule lies at the
edge of chaos if small changes in its rule table move it back and forth
between chaotic and nonchaotic behavior.

Our investigation requires us to classify each rule according to the
behavior it generates. As previously discussed, Wolfram (2002) classifies
automata as either being fixed (Class 1), periodic (Class 2), chaotic
(Class 3), or complex (Class 4). Li and Packard (1990) use a slightly
different and finer classification. For our purposes, the important differ-
ence between these two classifications is that Li and Packard pay special
attention to rules that generate two-period cycles, what we will call
blinkers. Li and Packard’s definition of complex is also worth noting.
Like Wolfram, they define a rule as complex if the time it takes to get
to the limiting distribution is long, but in addition they require that this
time increases linearly with the number of cells.
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Table 8.11
Rule 110

Left Right
Situation Neighbor Self Neighbor Rule 110

0 0 0 0 0
1 0 0 1 1
2 0 1 0 1
3 0 1 1 1
4 1 0 0 0
5 1 0 1 1
6 1 1 0 1
7 1 1 1 0

Table 8.12
Neighbors of Rule 110 and Their Respective Wolfram Class and Li-Packard
Classifications

Rule Rule Rule Rule Rule Rule Rule Rule
Situation 111 108 106 102 126 78 46 228

0 (000) 1 0 0 0 0 0 0 0
1 (001) 1 0 1 1 1 1 1 1
2 (010) 1 1 0 1 1 1 1 1
3 (011) 1 1 1 0 1 1 1 1
4 (100) 0 0 0 0 1 0 0 0
5 (101) 1 1 1 1 1 0 1 1
6 (110) 1 1 1 1 1 1 0 1
7 (111) 0 0 0 0 0 0 0 1
λ 3/4 1/2 1/2 1/2 3/4 1/2 1/2 3/4
Wolfram 2 2 3 3 3 1 2 1
Li-Packarda 2-C 2-C Ch Ch Ch F F F

Note: a 2-C is 2-cycle, Ch is chaotic, and F is fixed.

Consider Rule 110 shown in table 8.11. This rule is classified as
complex by both Wolfram and Li and Packard. To see whether it is poised
at the edge of chaos, we need to define the set of neighboring rules. The
most obvious notion of neighborhood here is to consider all the rules that
have a rule table that differs by only one situation. Using this convention,
Rule 110 has the eight neighboring rules given in table 8.12.

Is Rule 110 at the edge of chaos? The last two rows of table 8.12
reveal that three of its eight neighbors are chaotic11 and three lead to

11The usual caveats of rule classification apply; for example, all three chaotic neighbors
have fixed points at all zeros.
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fixed points. Thus, this rule appears to be poised between chaos and
stasis. Superficially, at least, this seems to indicate that Rule 110 is on the
edge of chaos.

Langton’s (1990) model of the edge of chaos classifies one-dimensional
cellular automata according to a single parameter, λ. In his model
each site has s possible states and is connected to k neighbors in both
directions. The λ value for a given rule equals the percentage of all rule
table entries that map into some predefined quiescent state. Thus, if all
rule table entries map into the quiescent state, then λ will equal one. In
this case, the system will immediately freeze in the quiescent state. In his
experiments, Langton explored randomly generated rule tables and tried
to connect the λ value for a given rule table to a measure of subsequent
system activity. He found that λ had some explanatory value—as it
decreased from one, the average behavior of the implied systems went
from rapidly freezing, to long transients, to chaos. For Langton, the edge
of chaos was the value of λ at which the average behavior first showed
evidence of chaos.

It is not too surprising that chaotic system behavior roughly correlates
with a parameter like λ. As a crude approximation, suppose that there
are only two possible states and that at any time step the state of each
site is randomly chosen.12 With random sites, the λ parameter gives the
probability that any given site will be mapped to the quiescent state.
Thus, when λ approaches either of its extreme values (zero or one), the
sites are likely to lock into the quiescent state. As λ gets closer to 1/2,
chaos will reign as each site will have an equal chance of being either
value. Thus, an “edge” associated with monotonic changes in λ will
appear between these two types of behaviors.

This crude approximation of what occurs as λ varies can be refined
by looking at particular rules in more detail. Our approach here is to
explore the entire space of two-state, nearest-neighbor cellular automata
rules. Of the 256 rules of this type, 32 are classified as chaotic. Since
there are eight rule table entries for this type of cellular automaton, λ

values are of the form j/8, where j belongs to {0, 1, . . . , 8}. The number
of rules associated with each λ value varies widely, from 1 rule for λ

equal to 0 or 1, to 70 rules when λ equals 1/2. In table 8.13 we show
the number of possible rules for each λ and the number of such rules that
are classified as chaotic and complex.13 The table shows that the chaotic
rules are strongly biased toward the middle of the distribution of λ (with

12We know, of course, that as time passes there is often much more structure to the sites
(for example, triangles and such), but for the moment we ignore this issue.

13The chaotic rules are: 18, 22, 30, 45, 60, 73, 75, 86, 89, 90, 101, 102, 105, 106, 109,
120, 122, 126, 129, 135, 146, 149, 150, 151, 153, 161, 165, 169, 182, 183, 195, and 225.
The complex rules are: 54, 110, 124, 137, 147, and 193.
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Table 8.13
λ-Distribution over Chaotic and Complex Rules in the Space of Two-State,
Nearest-Neighbor, One-Dimensional Cellular Automata

λ All Rules Chaotic Rules Complex Rules

0 1 0 0
1/8 8 0 0
1/4 28 2 0
3/8 56 4 1
1/2 70 20 4
5/8 56 4 1
3/4 28 2 0
7/8 8 0 0
1 1 0 0

Table 8.14
λ̂-Distribution over Chaotic and Complex Rules

λ̂ All Rules Chaotic Rules Complex Rules

0 2 0 0
1/8 16 0 0
1/4 56 4 0
3/8 112 8 2
1/2 80 20 4

most having a λ value of 1/2). The table also shows the distribution of
the six complex rules in this space. As expected, these rules too are biased
toward the middle of the λ distribution.

Given symmetry, both zero and one can be thought of as quiescent
states. Therefore, a λ of 5/8 and one of 3/8 are equivalent, and so on.
If we define λ̂ to be the minimum of λ and (1 − λ), we can condense
table 8.13 into table 8.14. Using these data we can compute the average
λ̂ for the different types of rules. Chaotic rules have an average λ̂ of
0.44 and complex rules an average of 0.46. Thus, Langton’s inference,
namely that complexity occurs at the edge of chaos, seems to hold in this
example.

However, the edge that appears in the aggregate data is not apparent
in the individual cases. That is, there are multiple edges, not just a single
one. For example, consider the neighbors of Rule 110 (see table 8.12). If
the picture of an easily tuned world existing between complexity on the
one hand and chaos or stasis on the other was accurate, then we would
expect that the neighbors with λ equal to 1/2 would generate chaos and
those with λ equal to 3/4 would be cyclic or stable. Yet, we see from



December 5, 2006 Time: 10:53am chapter08.tex

134 • Chapter 8

Table 8.15
Relevant Rule Table for Rule 46 after Two Iterations

Situation Rule 46

0 (000) 0
1 (001) 1
2 (010) –
3 (011) 1
4 (100) 0
5 (101) 1
6 (110) 0
7 (111) –

table 8.12 that this is not the case. When λ equals 1/2, two rules are
chaotic, two are fixed, and one is cyclic. When λ equals 3/4, one rule
with each type of behavior exists.

To investigate this issue a bit more, consider Rule 126 shown in
table 8.12. This rule has a λ value equal to 3/4 yet it is chaotic. A look
at its rule table indicates that it produces a one unless the site and its
neighbors all agree, in which case it goes to zero. While this rule could
potentially lock into all zeros, its general tendency is to propagate ones
in the system while eating away at the edges of any long strings of zeros.
Moreover, as soon as three consecutive ones appear, they are destroyed
by having a zero inserted at their center. As long as the system begins
at any configuration other than all ones or all zeros, Rule 126 tends to
create ones and then destroys them, resulting in long, convoluted cycles
of activity.

Now consider Rule 46, which has periodic behavior with a λ of 1/2.
Some initial intuition can be gained by considering the behavior of the
rule after one time step. To do so, we can look at a neighborhood of size
5 (which has thirty-two possible configurations) and track what happens
to the middle three sites. We find that the sequence 010 is not a possible
outcome—that is, after one iteration of the rule we can never have a
single one bordered by zeros. This means that any future configurations
that require isolated ones will also be ruled out after the second iteration,
and in the case of Rule 46 this rules out the sequence 111. Therefore,
after two periods, we will never see the sequences 010 or 111, and we
can reduce the relevant parts of the rule table to that given in table 8.15.
In this restricted domain, Rule 46 is much simpler: copy the site to the
right. Such a rule is Class 2 according to Wolfram and fixed based on Li
and Packard—in either case, it is not chaotic.

The failure of a nicely behaved λ-edge in the neighborhood of Rule
110 is not particular to that rule. Every one of the rules classified as
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complex in this space has at least one chaotic neighbor with a lower λ

value and one with a higher value. Therefore, although it is true that
complex rules have chaotic edges, they do not lie poised at the edge of
chaos in the traditional sense implied by λ. That being said, the edge
of chaos idea is not wrong per se, as complex rules do appear to lie next
to chaotic rules. However, collapsing a multidimensional phenomenon
onto one dimension obscures the details. In the case of these simple
automata, what drives complexity, chaos, and order is the microstructure
within a rule such as we saw in Rule 46.

To show how microstructure undermines attempts to create a
“complexity dial,” we can partition the set of rules into four equal-sized
groups (with sixty-four rules in each) based on how the rule maps the
sequences 000 and 111. We will name each sequence based on the implied
behavior when we have a string of all zeros or all ones. Let the identity
rules be the ones that map 000 to 0 and 111 to 1. We call rules that map
000 to 1 and 111 to 0 blinker rules, as a string of all ones goes to all zeros,
then back to all ones, and so on. The third and fourth sets are those rules
for which 000 and 111 both get mapped to either 0 (0-attractor rules)
or 1 (1-attractor rules). In these latter rules, a string of identical elements
falls into, and remains in, the attractor state after one time period. Both
identity and blinker rules have an identical distribution of the number
of ones in the rule tables (with one rule each having one or seven ones,
six having two or six ones, fifteen having three or five ones, and twenty
having four ones). The two attractor rules have the identical distribution
except for the number of ones is offset either down by one (0-attractor
rules) or up by one (1-attractor rules). The λ distribution for each class
is directly tied to the distribution of ones.

Table 8.16 classifies the rules within each of the four sets using
Wolfram’s classification. Note that the blinker rules are far more likely
than the other types of rules to be periodic. This is not surprising, as once
long sequences of zeros or ones emerge, these rules embody two-period
cycles. Indeed, of the fifty blinker rules that lead to periodic behavior,
forty-six of them frequently generate cycles of period 2.14 Also note that
the identity rules and the attractor rules tend to be far more stable then
the blinker rules. Again, given the tendency of these rules to lock in long
sequences of zeros or ones, this is not surprising.

The one potentially puzzling result revealed in table 8.16 is that all of
the complex rules belong to the set of attractor rules. Recall that attractor
rules map 000 and 111 into the identical value, and thus it would seem
that these rules are the most likely candidates for boring behavior among

14In contrast, of the thirteen identity rules that are periodic, only nine generate period
2 cycles.
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Table 8.16
Classification of Our Rule Partition into Behaviors

Class 1: Class 2: Class 3: Class 4:
Rule Set Fixed Periodic Chaotic Complex

Identity 48 13 3 0
Blinker 7 50 7 0
0-Attractor 29 17 11 3
1-Attractor 29 17 11 3

the four sets. When we look at the complex rules within these sets, we
find a common characteristic— namely, that their rule tables are heavily
biased toward the opposite value that is being mapped to under 000
and 111. This leads to an inherent amount of, in Schumpeter’s words,
creative destruction. Long sequences of identical values that are induced
and stabilized by either the 000 or 111 mappings are destroyed at the
edges by the other elements of the rule table. During this destruction,
long sequences of the opposite value begin to accumulate, and these
form the basis for the creation of the original values. This process of
creative destruction results in long transients, where one value is churned
into another. This also explains why the identity rules do not generate
complex behavior, as long sequences are stabilized rather than destroyed
under such rules.

Our decomposition into the four sets also proves useful when thinking
about neighbors and the edge of chaos. Six of the eight neighbors of
any rule belong to the same set within the decomposition. Thus, six of
the eight neighbors of an identity rule will themselves be identity rules
and thereby are likely to generate fixed points. None of an identity rule’s
immediate neighbors can be blinker rules (as this requires flips in the rule
table for both 000 and 111), and therefore stability does not appear likely
to lie at the edge of periodicity. Attractor rules, which have exactly one
identity-rule and one blinker-rule neighbor, tend to border attractor rules.
More than two-thirds of the chaotic rules are attractor rules, and all of
the complex rules fall into this set. This partly explains why complex
rules have chaotic edges, as the complex and chaotic rules belong to the
same set. Therefore, our decomposition (by construction) lends support
to the notion of an edge of chaos, but not a single edge, as usually
supposed, but rather a multitude of edges contained within the set of
attractor rules.

A crude measure like λ has its uses and limitations. As the analysis
indicates, knowing the λ value of a particular rule does not necessarily
tell us much about that rule’s behavior. The λ value is, however, probably
a good way to identify broad areas of the rule space that might harbor
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the potential for interesting behavior. In this view, λ is a necessary but not
sufficient condition for interesting behavior. Note that the analysis was
confined to very simple automata (one-dimensional, two-state, with one-
nearest-neighbor), and we know that such systems may have limitations
(though sometimes even advantages) over more complicated systems.
That being said, we suspect the tenor of the insights obtained here are
relatively general.

8.4.2 Computation at the Edge of Chaos

For most physical, biological, and social processes, an important aspect
of rule behavior is whether the system can generate productive behavior.
The productive behavior we are concerned with here is the ability of
a system to solve a computational problem. The measures of system
behavior we used were ways to capture indirectly an automaton’s ability
to compute answers by tracking its ability to transmit and process
information. In this section we look at the process of computation more
directly.

Cellular automata become computational systems when they produce
“answers” to “questions.” In these systems the questions are posed by
setting up initial conditions and then activating the automata. Answers
come from some interpretation of the system after it has undergone
sufficient iterations. For example, if the system must determine a binary
answer to some question, we might allow the automaton to run and then
take the state of a randomly chosen site as the answer. A well-known
example of such a computation (Packard, 1988b; Mitchell, Crutchfield,
and Hraber, 1994) is having the automaton determine whether the initial
condition has more ones than zeros.

Because computations must give useful answers, intuitively we would
suspect that the rules that can undertake computation must lie in a
regime that is neither too chaotic (since no consistent answers will be
forthcoming) nor too ordered (since insufficient computation can take
place). If we rely on a measure like λ, we may not have strong support for
this proposition, since experiments like Mitchell, Crutchfield, and Hraber
(1994) show that useful computation takes place where λ is much closer
to 1/2 than one would predict.

To investigate these issues, consider automata that must solve binary
classification problems. These automata take some initial condition and
classify it into one of two possible answers (say, yes or no). We will allow
an automaton to take any given question (initial condition) and compute
until it enters its limit cycle, at which point we will query a random site at
a random iteration to get the answer. A computation will yield the wrong
answer if the queried site is in the wrong state. For an automaton to yield
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a perfect computation, it must enter a one-period limit cycle with every
site having the identical, correct answer.

An initial step in analyzing such a system is considering only those
automata that yield perfect computations. The requirement of perfect
computation is quite severe as there are many situations in which
imperfect computations, say, those that give the correct answer 85
percent of the time, could be of great value. Nonetheless, starting at
perfection allows us to narrow the analysis sufficiently and develop some
useful benchmarks.

A necessary condition for perfect computation is that the automaton
enters a one-period limit cycle in which all sites are in the same state.
Thus, for a perfect computation the rule table must always map 000
into a 0 and 111 into a 1. This constraint is the defining property of the
identity rules discussed previously.

At the outset, we note that these kinds of systems are not going to be
able to solve that many problems. Since each automaton is deterministic,
any given question (initial condition) will always be associated with the
same answer (either a one or zero). Thus, each automaton can only
implement a single classification scheme. Recall that there are sixty-four
possible identity rules, and therefore at most we will be able to do
sixty-four unique computations.15 More likely than not, some automata
will overlap and solve the identical problem. Thus, even under the best
of circumstances, there can be at most sixty-four unique computations
(binary classification schemes) possible. That is, these kinds of decentral-
ized computational systems, with one-dimensional, two-state, one-
nearest-neighbor automata, can solve perfectly no more than sixty-four
different kinds of classification problems.

The mapping restriction that we placed is a necessary, but not a
sufficient, condition for perfect computation. All it does is ensure that
if the automaton can configure itself such that all sites have the right
answer, then it can maintain that answer. The restriction does not
eliminate other limit cycles that would result in imperfect answers.

What about the other types of rule classes? Blinker rules, given our
requirement of stabilizing on a single answer, will not work as they
alternate between ones and zeros. Attractor rules might be able to classify
in one direction. That is, they can produce all zeros (or all ones) if a
criterion is met and not converge otherwise.

15If a given rule is capable of universal computation and if we allow customized input
strings, then we could perform a vast array of computations. Of course, this requires
“intelligence,” also known as computation, being embodied in the initial input string. As
can be seen from table 8.16, there are no identity rules that are complex. This is an artifact
of the size of the neighborhood, as rules with more neighbors can belong to the class of
identity rules and be complex, as Mitchell, Crutchfield, and Hraber (1994) show.
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These simple distinctions between the various classes of rules allow us
to speculate on how systems could evolve the capacity to compute.

First, note that decentralized computation becomes much more diffi-
cult if the initial conditions leading to different answers are “close” to
one another. Therefore, successful early computation may require the
appropriate environment—one in which the “answers” are “obvious.”
Once the system achieves this milestone, it can start to fine-tune itself
to handle more difficult cases. This secondary tuning of the algorithm
probably does not respect crude boundaries based on statistical general-
izations like the λ parameter, any more than, say, height is an indicator
of basketball skill. Thus, in systems such as the one studied by Mitchell,
Crutchfield, and Hraber (1994), we are likely to find that gross measures
of system behavior, like λ, are insightful as the initial evolution embraces
the easy cases. As the system further evolves to handle the more difficult
cases, however, measures like λ become less relevant.

Second, given our rule classes we might expect that remedial com-
putations first emerge via identity-type rules. Once these computations
become available, the other classes of rules may come into play. To put
this more concretely, early on blinkers and attractors may get selected
against in favor of identity rules. Once identity rules are established, we
might expect that attractor rules will arise. Attractor rules are capable
of more interesting computation than either blinker or identity rules and
are more likely to emerge from identity rules as they require only a single
mutation in an identity rule’s table (versus two for a blinker rule).

The fact that we find little evidence that a one-dimensional char-
acterization of the edge of chaos suffices as an accurate indicator of
computational ability could well be an artifact of our smaller-sized
automata, but a more likely hypothesis is that the metric needs to be
better situated within the space of automata rules. At the simplest level,
rule structure is a function of both the number of zeros in the rule
table and the location of these zeros. There is a delicate dance between
these two features when we are away from the extremes. If we want to
understand these types of systems, we must be willing to disentangle their
movements.

8.4.3 The Edge of Robustness

We end this exploration into the edge of chaos on a more speculative
note. Fine-tuning these systems creates a tension. As we attempt to
incorporate more delicate behavior by adding more structure to a rule,
we are likely to make the underlying system less robust. This is because
the structures necessary for delicate behavior require an underlying
system that is rich in possibilities. In essence, we need a quivering system



December 5, 2006 Time: 10:53am chapter08.tex

140 • Chapter 8

that will fall into the right state with only a gentle tap. In such a system,
an improper tap can lead to very unpredictable results.

Adaptive systems have to deal with the tension between the benefits of
achieving precise behavior and the cost of increased system fragility. One
hypothesis is that adaptive systems will have a bias toward emphasizing
simple structures that resist chaos over more complicated ones that
handle difficult situations. There are two reasons for this hypothesis.
The first is that simple structures are likely to be easier to find and
maintain. Of course, that does not eliminate the possibility that adaptive
systems first lock on to these simple structures and then move on to more
complicated ones. This is a plausible supposition, if we assume that there
is an adaptive path from one to the other.

The second justification for the hypothesis is that systems that are
fragile are very risky in terms of rewards, and adaptive systems tend to be
risk averse. While being able to handle delicate situations appropriately
on occasion might result in large rewards, there is also a chance that
it will lead to large losses. Adaptive systems tend to be inherently risk
averse because, notwithstanding the potential gains to be made by taking
even a favorable risk, it takes only a single loss to kill off an agent and
eliminate it from the system forever.

It is hard to disagree with the notion that adaptive systems will tend
to evolve agents with behavior that is between less-productive extremes.
Such a weak-form edge-of-chaos hypothesis seems both sound and a
useful starting point from which to launch further investigations. The
strong-form hypothesis—namely, that adaptive systems congregate at a
narrow edge where slight changes in their behavior lead to chaos or
frigidity—is harder to justify. At least in the case of our simple automata,
rules that compute lie in a region of rule space that consists largely of
other rules that compute.

The full implication of these edge-of-chaos hypotheses for the social
sciences is still an open question. Clearly there are systems, for example,
stock markets, in which agents actively adapt and alter the fundamental
behavior of the system and, in so doing, force it into new realms of
activity. Thus, if stock markets are too predictable, then we would expect
adaptation to create agents that can exploit this feature. The emergence
of such agents should wipe out the predictability and push the system
toward a more chaotic regime (which is essentially the argument driving
the efficient-market hypothesis). However, once the market is completely
chaotic, the selective pressures on agent behavior become quite neutral,
and predictability might again slip back into the system.
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Social Dynamics

Far better an approximate answer to the right question,
which is often vague, than the exact answer to the wrong
question, which can always be made precise.

—John Tukey, Annals of Mathematical Statistics

Few things are harder to put up with than the annoyance of a
good example

—Mark Twain, The Tragedy of Pudd’nhead Wilson

To further our investigation of complex adaptive social systems,
here we create some models with more elaborate agent dynamics. These
dynamics allow us to investigate new realms of social behavior, and the
resulting models can be used to explore topics such as racial segregation,
the role of expectations on behavior, and city formation. Moreover, we
also consider some new concepts surrounding equilibrium analysis and
self-organization in social systems.

9.1 A Roving Agent

Our first model considers a system composed of a single agent who
maneuvers in physical space. A single agent does not a society make,
so to transform this into a model of a social process we would need to
tell some story about how influences from other agents in the world are
embodied in our single agent’s movement rule. Creating a coherent and
socially meaningful story along these lines is not difficult, but we will
forgo such opportunities as our focus here is to illustrate some higher-
level issues surrounding equilibria.

Our single agent has an odd penchant for roving across a line with the
locations numbered sequentially from 0 to N. In each period the agent,
using a fixed-movement rule, decides on a new location based only upon
its current location. The movement rule depends on whether the agent
finds itself in either the lower- or upper-half of the line. If it is in the lower
half, that is, at site j where j ≤ N/2, it moves to site 2 j ; if, instead, it is
currently located in the upper half ( j > N/2), it moves to site 2(N − j).
Given this rule, an agent in the lower half always increases its location
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Table 9.1
Rover Dynamics for N = 10

Location Next Location

0 0
1 2
2 4
3 6
4 8
5 10
6 8
7 6
8 4
9 2

10 0

and eventually enters the upper half of the line, unless it is at location 0,
in which case it stays there forever. An agent in the upper half will go
to the lower half when j ≥ (3/4)N and stay in the upper half when
j < (3/4)N. When j = (2/3)N, the agent will stay exactly where it is.
Thus, the system has two fixed points, one at 0 and one at (2/3)N.
Table 9.1 summarizes these dynamics for the case where N = 10.

We can use some simple computational experiments to understand
better the potential dynamics of the roving model. Recall that earlier we
showed how finite systems with deterministic dynamics (like this one) are
guaranteed to cycle, so our analysis here focuses on these cycles. Consider
systems where the agent always begins at site 1. If the line has ten sites,
then from table 9.1 we see that the agent will find itself in the following
locations: 1, 2, 4, 8, 4, . . .. Note that once it returns to a site previously
visited (site 4 in this case), it begins to cycle. With one hundred sites, the
agent will consecutively locate at sites 1, 2, 4, 8, 16, 32, 64, 72, 56, 88,
24, 48, 96, 8, . . ., and thus be ultimately trapped in a cycle of length
ten that perpetually traverses the values between 8 and 96 in the above
series. In table 9.2 we show the cycle lengths for other values of N. As is
apparent from the table, as N increases so does the cycle length.

The function that underlies the behavior of our agent is a discrete
analog to the “tent map” made famous in chaos theory (see, for example,
Ott, 1993). In the limit, the cycles become infinitely long, implying that
our agent will forever roam the lattice.

In the continuous case defined over the open interval, the tent map has
a unique, fixed-point equilibrium at x = 2/3. In the discrete examples
that we just considered, N was not divisible by 3, so this equilibrium did
not exist. We can fix this problem by letting N = 102, in which case a
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Table 9.2
Equilibrium Cycle Length for a Single, Roving Agent

Number of Sites Cycle Length

10 2
100 10

1,000 50
10,000 250

100,000 1,250

fixed point arises at location 68 (since 68 = 2(102 − 68)). Suppose that
an agent at the fixed point makes a slight error and lands on location
67. From location 67, the agent would next travel to locations 70, 64,
76, 52, 100, 4, 8, 16, 32, 64, . . . , ending up in a cycle of length eight.
Thus, this equilibrium point is unstable. This instability is tied to the
steep slope of the relocation function. Namely, small mistakes lead to
larger corrections—after moving one location too low, the agent moves
two locations too high, then four locations too low, and so on.

While the lack of stability of the fixed-point equilibrium is problematic,
of even more concern is its relatively small basin of attraction. If we
assume no mistakes, an agent will end up at location 68 only if it starts
at locations 17, 34, 85, or 68. Similarly, for the fixed point located at
0, only locations 51, 102, and 0 will get you to that equilibrium. Thus,
only a small fraction of the total locations will get you to the fixed point,
implying that such equilibria may be hard to acquire (and, with noise,
easy to lose).

In this simple model the traditional notions of fixed-point equilibrium
analysis may not be that useful. While the model is guaranteed to fall into
an equilibrium, the cyclic equilibria have much larger basins of attraction
than the fixed-points ones. The combination of multiple equilibria, small
basins of attraction for the fixed points, and instability suggests that
traditional equilibrium analysis may have little predictive value. Complex
systems models may enable us to identify which equilibria are most
likely and help to reveal the links between behavioral assumptions and
equilibrium selection.

9.2 Segregation

A classic “computational” social model is Schelling’s (1978) work on
racial segregation. In this model, the world consists of agents living
on the squares of a checkerboard. Initially, agents are randomly sprinkled
across the board (with one agent per square and some squares left
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unoccupied). There are two types of agents, and each agent has a
minimum required threshold for living with those of the same type. When
the number of same-type neighbors falls short of an agent’s threshold,
it randomly relocates to a new spot on the board. One of this model’s
most striking results is that even when agents are tolerant of the opposite
type, segregation is still likely to emerge. Segregation arises due to the
phenomenon of tipping, whereby the early movements of even a few
agents can create the incentive for other agents to move. This cascade
of movement dies out only when the system becomes highly segregated.

We now create a one-dimensional version of Schelling’s Segregation
model. Assume that two types of agents live on a circular lattice and that
each agent’s neighborhood consists of all locations k steps away. Each site
on the lattice is initialized with either an agent of one of the two types
or it is left empty (with equal probability among the three possibilities).
Following Schelling, each type of agent has the identical threshold value,
but these values may differ between the two types. When an agent is given
a chance to act, it first calculates the percentage of its neighbors that are
of the same type. If this value is less than its threshold, the agent moves
to a random, vacant location; otherwise, it remains in place. We assume
a location-based, asynchronous updating mechanism—in each period we
loop through the sites in spatial order and allow the occupant of the site,
if any, to act.

To analyze our model, we distinguish between tipping and segregation.
We define tipping as the process by which the movement of agents causes
cascades of further movement. We operationalize tipping by comparing
the number of agents that move before the model reaches an equilibrium
to a measure of the potential for agent movement (either the number
of agents that want to move initially or the number that actually move
during the first iteration1). Increased tipping is associated with higher
values of the ratio of the number that actually move to the potential
number of movers. Segregation occurs when the two types of agents fail
to associate with one another. We measure segregation by counting the
number of times two neighbors (ignoring any intervening spaces) are of
different types. Lower values of this measure are associated with greater
segregation in the system.

We run the model on a lattice of size 100 with a neighborhood size of
four. The data is averaged over 500 separate trials.

In the initial model we give each type of agent a threshold of 40 percent
(the 40/40 column in table 9.3), whereby the agent will move if fewer
than 40 percent of its neighbors are the same type. Under this condition

1Because agents are acting asynchronously, the number that actually moves during the
first iteration may differ from the number that initially wanted to move.
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Table 9.3
Results from a One-Dimensional Tipping Model with N = 100, k = 4, and
500 Trials

40/40 30/50 31/49

Agents initially wanting to move 19.2 26.0 19.8
Agents who move during first iteration 21.9 30.1 23.2
Agents who move during first 100 iterations 42.5 110.8 58.8
Final blocks 5.8 5.0 5.8

there is not much tipping—the number of agents that eventually move
is only about twice that of those who wanted to move initially. Despite
the low amount of tipping, segregation increases substantially, with the
number of opposite-type adjoining neighbors decreasing from around
30 to 5.8.

These results are a bit puzzling as the amount of tipping is well below
that observed by Schelling. A number of differences in our model might
account for this discrepancy: we use only one versus two dimensions,
our updating rule is slightly different, and threshold choices may be
important. Additional experiments suggest that while the dimensionality
and updating can make a difference, the more interesting area of
investigation is in the choice of thresholds.

One of the major differences between the parameters of this model
and Schelling’s is that we used symmetric thresholds. Schelling relied on
asymmetric thresholds for the two types of agents. The 30/50 column in
table 9.3 gives the result when the two types of agents have 30 percent
and 50 percent thresholds, respectively. Under these thresholds, tipping
becomes much more pronounced, with around four times the number
of agents that initially wished to move eventually moving. Although the
amount of tipping is much higher, the final segregation level is roughly
equal to that seen under the symmetric threshold.

Given the discrete nature of the neighborhood, there is the potential for
discontinuities to arise in the the model. These discontinuities can become
particularly important under asymmetric thresholds. Because agents base
their actions on the percentage of neighbors, the critical thresholds are
tied to the neighborhood size. With only two neighbors, you can have
only 0 percent, 50 percent, or 100 percent of the same neighbor type;
with three neighbors, you can have 0 percent, 33 percent, 67 percent, or
100 percent; with four, you can have 0 percent, 25 percent, 50 percent, 75
percent, and 100 percent; and so on. These discontinuities imply that the
behavioral differences induced by various thresholds may be slight. For
example, with anywhere between two and eight neighbors, 40 percent
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versus 50 percent thresholds only imply different behavior in two out
of the forty-two possible configurations of the world. To demonstrate
such effects, we ran the model with asymmetric thresholds of 31 and
49 percent. As shown in table 9.3 these slight changes in threshold values
cause the system to resemble the symmetric 40 percent thresholds case
rather than the parametrically much closer asymmetric case.

Although the data indicate that the final segregation level is similar
across the parameters, the dynamics are very different. With symmetric
thresholds, the system rapidly converges to a segregated outcome as
agents of both types find acceptable neighborhoods. With asymmetric
thresholds, segregation takes much longer. In these systems, almost all
of the movement is by the agents with the less tolerant threshold.
On average, twenty-three of the twenty-nine agents that moved in the
first period had the less-tolerant threshold. This behavioral discrepancy
continues on into later periods as well. This differential movement
explains the puzzle of why there is so much more movement, yet similar
segregation, in the asymmetric system: with only one type of agent
moving, it takes longer for the system to segregate.

Finally, we can further refine our analysis of movement by tracing the
impact of a given move on subsequent moves. One possibility here is
that when an agent moves, it is still unhappy with its new location and
moves again. This type of movement is a common occurrence with a 50
percent threshold. Another possibility is that the agent’s move impacts
either its old neighborhood (where neighbors of the same type now want
to move) or its new neighborhood (where agents of the opposite type now
want to move). We find that in the asymmetric case, there tends to be far
more of the former type of tips—that is, agents in the old neighborhood
decide to move when like-type neighbors leave. In sum, depending on our
assumptions we can alter the amount of tipping. We find that high levels
of tipping are associated with the 50 percent rule. Relocations in a Seg-
regation model are a form of positive feedback, and when conditions are
right such feedback can cause major cascades to wash across the system.

9.3 The Beach Problem

Though less well known than his Segregation model, Schelling’s (1978)
Beach model has become a core model of complex adaptive social
systems, albeit under different names.2 In Schelling’s version, every

2Arthur’s (1994) variant is known as the El Farol problem. In physics there is a version
called the Minority game, in which an odd number of players chooses either option A or
B, and those who choose the minority option split a prize (Challet and Zhang, 1997).
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Saturday people living in the city must decide whether to go to the
beach. While everyone enjoys getting away to an uncrowded beach, their
enjoyment is greatly curtailed if the beach is crowded.

A few obvious social mechanisms could solve such a problem. One
method would be to impose some kind of institutional structure from the
top down that restricts access to the beach. This could be in the form
of a market (you need to buy a ticket to get on the beach) or some
other allocative arrangement like, say, allowing admission based on
some immutable characteristic like the parity of the beach goer’s license
plate.

Alternatively, we could consider decentralized solutions that emerge
from the bottom up, that is, we can hope that purposive individual
behavior aggregates into a sensible solution. For example, game theory
provides a simple bottom-up solution via mixed strategies. If the city
contains a million people but only one hundred thousand can comfort-
ably coexist on the beach, then each person can write the word “beach”
on one side of a fair, ten-sided die, and only go to the beach if a roll of
the die yields “beach.” In this way, on average, the optimal number
of people will be at the beach each Saturday.

This simple mixed-strategy solution has two potential flaws. The first
is relatively minor, namely, that while on average one hundred thousand
people will go to the beach, there is some variance across all of the
dice throws, and the number going to the beach will rarely be exactly
one hundred thousand. It turns out that the standard deviation of this
random process is only about three hundred, implying that more than
99 percent of the time we would not expect the actual number on the
beach to deviate by more than one thousand people. Thus, sometimes
the beach is a little crowded and sometimes there is a bit of extra space
to stretch out, but overall randomness does not seem to be much of an
issue here.

The second, and more problematic, issue is that we rarely see
individuals employing dice in such decisions. More typically, people
base their actions on various predictive models of the world, and then
the aggregation of these predictions drives the system. These predictive
models require individuals to make decisions based on recognizable
patterns that form in the world. Presumably, individuals will tend to
latch on to those models that preform better, that is, that result in
behavior that leads to superior outcomes. Of course, there is an infinity
of patterns one could look for in the world, and each of these can
be associated with various decisions. For example, if the beach was
crowded last Saturday (or, say, three out of the last five Saturdays),
then one person might reason that it will be empty next week, while
another might believe that it will remain crowded. Whatever the rules,
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we are likely to see heterogeneity among the population. Moreover, these
various predictive models will interact with, and adapt to, one another
much like organisms in a biological ecosystem. The models will compete
with one another, alter, form new niches, and so on in a very dynamic
process.

Unpacking the implications of such a formulation was the focus of
Brian Arthur’s (1994) reformulation of the Beach problem as the El Farol
problem. In this version, people want to go to a local Santa Fe bar. Like
Schelling’s Beach model, they would rather stay at home if the bar is
crowded. Arthur constructed a model in which each agent had access
to several decision rules that competed with one another for the agent’s
attention (based on the rule’s past predictive value). Arthur found that
the outcome of this adaptive system was quite efficient, in the sense that
the number of people who showed up in the bar each weekend was,
on average, optimal.

In subsequent work (mostly by physicists), many variations have been
explored. It has been found, for example, that the model can produce less
variance than would exist if each person had rolled a die and played the
mixed strategy. This reduction in variance occurs even though different
people go to the bar each week. Thus, decentralized, diverse agents can
self-organize so as to create reasonably stable outcomes (Zambrano,
2004).

We can illustrate some of these ideas using a simple model. Suppose
we have four people in the world, A, B, C, and D, who want to get
together for some activity once a week. The activity is such that it is
great fun if only two show up, but if any other number arrives it would
have been better to have just stayed at home. We further assume that
everyone knows how many people showed up each week. To seed the
system, let all four people show up to the first meeting and only A and B
to the second.

We begin our analysis by assigning each person a simple decision rule.
(These rules were derived somewhat arbitrarily using some commonsense
prototypes.) Person A goes if the average attendance over the past two
weeks is less than two. Person B goes unless exactly two people went last
week. Person C goes if more people went last week than the week before.
Finally, person D goes if exactly two people went last week.

By applying these rules we can determine the weekly attendance
patterns. Thus, in week 3, person A stays home since the average
attendance has been three, person B stays home since exactly two went
last week, person C stays home since the recent attendance has fallen,
and person D goes because exactly two went last week. Table 9.4 shows
the attendance patterns for the first ten weeks. Notice that we have the
identical attendance patterns in weeks 8 and 9 that we had in 4 and 5, and
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Table 9.4
Attendance Patterns in a Simple Beach Problem

Week Attendance

1 ABCD
2 AB
3 D
4 AB
5 ACD
6 BC
7 D
8 AB
9 ACD

10 BC

therefore (since any given decision rule relies on at most the previous two
weeks) the system will cycle AB, ACD, BC, and D forever. On average,
this cycle has exactly two people showing up each week with a variance
equal to one-half. If these agents used a mixed-strategy solution and each
flipped a fair coin to decide if she would attend, we would achieve the
same mean but the variance would increase to one. Thus, the predictive
ecology approach leads to a better outcome than the mixed-strategy
one in the sense that we achieve the same mean with a lower variance.

Of course, we did choose which predictive rules to admit to the
ecology, so perhaps this outcome is anomalous. Alas, the rules we
picked were pretty much random choices (we promise), so we did not
intentionally build anything into the system. Nonetheless, there are a lot
of rules we could have used, so perhaps we just got lucky.

Once we allow the possibility of agents adapting their rules we add
an important twist to the dynamics. Suppose that the pattern that
emerges is, say, ABCD, A, ABCD, A, and so on. Given this, we would
expect at least one of the people to alter her attendance rule as the
outcome is lousy for all. Presumably, this adaptation would continue
until the system achieves a pattern in which each person feels that she
can do no better by changing her rule.

The dynamics of such behavior can become quite complicated, and
the system may or may not settle down. Consider the pattern that arose
in table 9.4. Given this pattern, we might expect someone to alter her
behavior. For example, suppose person A alters her rule so that she
goes if the average attendance over the past two weeks is less than two
or if exactly three people went the week before last. Table 9.5 shows
the outcomes resulting from this change in person A’s rule. Here a new
cycle emerges that takes the system through the states AD, D, AB, ACD,
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Table 9.5
Attendance Patterns after Person A Changes Her Rule

Week Attendance

9 ACD
10 BC
11 AD
12 D
13 AB
14 ACD
15 BC
16 AD
17 D
18 AB
19 ACD
20 BC

and BC. Again, we find that the average attendance is two, though now
60 percent of the time exactly two people show up (versus 50 percent
in the previous cycle) and the new variance is even smaller than before,
implying that they have found an even better global pattern.

With larger populations of agents, ecologies of predictive models
become much more complicated. Nevertheless, similar ideas apply, and
again we find the possibility of collections of adaptive agents creating
relatively stable outcomes from the bottom up.

For example, consider the Minority game. In this game we have an odd
number of players, each of whom must choose either option A or B. At
each round, any player who chose the minority option shares in a prize.

In a common formulation of the game, all of the players track the
minority outcome for the past M periods. A strategy in this game must
map each of the 2M possible histories to a choice of either option A or B.
Typically these games begin with N players, each of whom randomly
picks a strategy. Every T periods the worst-performing player is replaced
with either a clone of the best-performing player or, with probability ε,
a randomly selected strategy. This cloning error provides a balance
between exploitation (using the best-known strategy to date) and explo-
ration (searching for possibly better strategies).

It has been found that the ratio of the number of possible histories
to the number of players is a key parameter in these models (Challet
and Zhang, 1998). If ρ = 2M

N is too small, then there is a lack of
strategic diversity and efficient coordination is difficult to achieve. If ρ is
large, the strategy space offers too much room within which to wander,
and again efficient coordination fails. Thus, there is a critical value of
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ρ that minimizes the variance of the number of agents participating
in the minority. These results reveal a connection—possibly a deep
one—between the depth of the cognitive models of the agents and the
ability of the system to coordinate. This raises the possibility of emergent
cognitive depth: adaptive agents may learn to think just deeply enough
to promote coordination in the system.

9.4 City Formation

The interrelationship between economics and geography has been of
interest to scholars since von Thunen’s work in the early 1800s. Most
recently, the impact of cities on economic growth and development has
become a central topic prompted by the writings of Jacobs (1984) and
others.

Most theorizing about city formation has emphasized two key aspects
of the problem: space and agglomeration. A city’s spatial location
determines many of its resource possibilities, ranging from the price of
natural resources to the ease of transportation. Furthermore, as agents
agglomerate within a city, both positive and negative externalities accrue.
Agglomeration effects are often subject to nonlinear feedbacks and
chance—small events can have big impacts on the eventual outcome.3

Given the emphasis of these models on spatial and nonlinear feedback
mechanisms, computational tools are a natural means by which to
investigate this topic.

To model the formation of cities, we construct a one-dimensional
world in which each site is capable of holding an unlimited number
of agents. We begin by assuming that these locations are arranged in
a line. A city in such a model will be a site that is occupied by a relatively
large number of agents. Agents move in response to economic and social
variables associated with each site, such as wage rates, living conditions,
and commodity prices. Rather than separately model each of these
variables, we collapse them into two generic categories that indirectly
serve as proxies for the key elements driving locational choice. The two
proxies we use are the agent’s home population—that is, the number of
other agents located at the agent’s current site—and the average distance
of the agent to all of the other agents, given by

∑
i pidi/

∑
i pi , where

pi is the population at location i and di is the distance from the agent’s
current location to site i .

3While examples abound, the first president of the Santa Fe Institute, George Cowan,
notes that Albuquerque bankers rejected a loan application from a young Bill Gates
during the early years of the company that eventually became Microsoft. Gates received
an alternative loan from his father, contingent on him returning to Seattle.
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These two attributes, home population and average distance, capture
in broad strokes the main drivers of location decisions. The home
population variable allows us to manipulate how the local effects of
agent agglomeration influence agent happiness. Agents may enjoy living
in larger cities because of the increased city services and the employment
opportunities they provide or, alternatively, find such size unpleasant due
to crowding. The average distance variable accounts for the impact of
more distant agglomerations on agent utility. Agglomerations of agents
in other cities influence conditions like local labor markets, commodity
prices, and transportation costs.

By manipulating the form of agent preferences we can create a
variety of models. Here we concentrate our analysis on three simple
variants. The first two variants focus on situations where agents enjoy the
company of others and either want to maximize their home population
or minimize their distance to others. While in both of these variants
agents “like” other agents, they attempt to achieve this goal in somewhat
different ways that could lead to differences in system behavior.4 In
the third variant we consider, agents attempt to maximize their average
distance from others.5 This last variant provides a nice contrast to the
previous two.

To define the model fully, we must specify when agents get to act
and how their preferences translate into actions. We will assume that
agents update asynchronously based on random order. When called on to
update, an agent will consider a set of potential new locations and move
to the location that best meets its objectives. We can vary the amount of
information an agent has about the world by limiting the potential set of
locations it evaluates to, say, only neighboring sites. If desired, we could
further restrict this set to be only a single, randomly chosen site rather
than all of the sites in the neighborhood. Thus, our agents could range
from relatively omniscient beings that look at all possible locations before
deciding where to move to ones that consider only a single, random,
neighboring site. A nice intermediate case between these two extremes
is allowing neighborhood searches that follow a hill-climbing algorithm
that iterates the search until no further improvements are possible. For
example, if the neighborhood search is of size 1, an agent would initially
evaluate the sites to its left and right and, if one is better than its current

4According to the 2000 census based on counties in the United States, a move to Los
Angeles County, California, would accomplish the first goal and Phelps County, Missouri,
would achieve the second one.

5If the probability of bumping into someone is proportional to an agent’s distance from
others, then minimizing expected contacts is equivalent to maximizing expected distance.
We note that Key West, Florida, has repeatedly tried to declare itself an independent country
known as the Conch Republic since 1982.
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location, move to it. Once there, the agent would evaluate the next site
over and move there if it improves on the site it just entered, and so on,
until no further improvements are possible.

The two models where agents “like” each other have very similar
behavior. In these models, the outcome that maximizes the happiness
of all the agents is the one in which they agglomerate into a single city.
When agents were allowed to search the line fully, this optimal outcome
always emerged. The actual location of the single city depended on the
initial conditions (whatever site had the largest initial population or, in
the case of a tie, the one with the first immigrant catalyzed the final city).
If the search was restricted to a neighborhood, then it was possible to
see multiple cities forming, each separated by a distance greater than the
neighborhood size. These results are not too surprising given a priori
reasoning.

However, in the model where agents “dislike” other agents and want to
maximize average distance, an odd phenomenon emerges. In their quest
to escape one another, the agents congregate into two cities that form at
the end points of the line rather than dispersing themselves throughout
the world (a result that might explain the motives of people living in New
York and Los Angeles). This outcome provides another nice example of
macrobehavior being at odds with micromotives.

To understand this last result, consider the following. First, assume a
world in which all but one agent lives at either of the two end points.
Let p0 and pN give the populations at the two end points, and assume
that the single agent resides at site i . The average distance for this agent
is given by (p0i + pN(N − i))/P = ((p0 − pN)i + pNN)/P, where P
is the total population. Note that the choice of i that maximizes this
distance depends only on p0 − pN. If p0 − pN > 0, the agent will want
to maximize i and will move to N; if p0 − pN < 0, the agent will want to
minimize i and move to 0; and if p0 = pN, all locations give the agent the
same distance. With the exception of p0 = pN, we will find two stable
cities forming at the end points.

Next, consider a situation where the agents are spread along the line
according to some distribution. The average distance of an agent located
at site i is given by (

∑
l<i pl(i − l) +∑r>i pr (r − i))/

∑
j pj , where pj

gives the number of agents at location j and the first two summations
give the weighted distances of the agents to the left and right, respectively.
If the agent moves one site to the left (that is, i decreases by 1), then the
distance to those agents on the left goes down by one while the distance
to those on the right goes up by one. The agent (whether it goes left
or right) also gains a distance of one from whatever other agents were
located at i . Thus, the agent will want to move left if

∑
r pr >

∑
l pl (and

right if
∑

r pr <
∑

l pl), that is, the agent will want to move left if there
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are more agents to its right than to its left. Moreover, as the agent moves
and passes by other agents, the direction of movement is reinforced and
the agent is driven to the end point. Based on these arguments, we will
see two cities forming at either end point.6

We note that the results we found hold for even more elaborate
topologies (Page, 1998). We can consider two-dimensional cities where
distance is measured via the number of city blocks that must be traversed
to get from one spot to another. Alternatively, we can array the agents
around a circle rather than a line. While the proofs in these cases are a
bit more elaborate, similar logic applies.

Thus, we see that a variety of micromotives, ranging from loving others
to hating them, leads to the same macrobehavior, namely, the formation
of cities. The macrobehavior of cities emerging in these models appears
to be insulated, at least to a certain degree, from the micromotives of
the agents. This is a somewhat extreme example where the “details do
not matter,” and it shows how complex adaptive social systems may
be subject to very strong aggregation forces that result in macrolevel
emergence. It also demonstrates how such systems can embody deduc-
tive indeterminism, in the sense that a particular consequence (people
wanting to live in cities) may have multiple, irreconcilable causes (they
either like one another or hate one another). When the details do not
matter, it is hard to deduce cause.

9.5 Networks

In our earlier models of majority rule we implicitly introduced the
concept of a network. In that simple, one-dimensional world the network
linked each agent to k neighbors on each side. We saw how slight changes
to the network (by altering the parameter k) altered the behavior of the
model—increasing the size of the neighborhood decreased the number
of blocks that formed, implying that the more connections across the
society, the more cohesive it became.

The k-neighbor network explored in the Majority Rule model
represents just one of many possible network configurations. Rather
than forcing nearest-neighbors to be connected, we could have randomly
connected the agents to one another. If we create these connections (or
edges in the language of graph theory) by, say, allowing each possible

6A slight qualification here is that a lone agent is willing to remain where it is if it has
an equal number of agents on either side of it. A city (more than one agent) cannot form
at this site as the symmetry will be broken by the additional distance gained by leaving the
other agents at the site.
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connection to form with a fixed probability, we get an Erdos-Reyni
network. Alternatively, we could make the connections according to
some other distribution, such as a power law. In this case, the most
connected person might have twice the number of connections as the
second-most connected, three times as many as the third most, and so
on. Networks as diverse as links to World Wide Web pages, metabolic
pathways in cells, telephone calls, and sexual contacts all appear to have
power-law-like distributions. Power-law networks have a fairly rich set
of connections and are very resilient to random failures. However, such
networks are susceptible to targeted failures: if you knock out the ten
most connected nodes, you can significantly alter the system’s behavior
(Newman, 2003).

Another network structure that has been the focus of much recent
attention is the small-world network. In a small-world network, each
agent is first connected to a set of neighboring agents (as was the
case in our Majority Rule model). To finalize the network, some of
these local connections are randomly severed and replaced by random
connections to anyone in the system. Thus, agents tend to be mostly, but
not completely, locally connected.

If a network is solely composed of neighborhood connections,
information must traverse a large number of connections to get from
place to place. In a small-world network, however, information can be
transmitted between any two nodes using, typically, only a small number
of connections. In fact, just a small percentage of random, long-distance
connections is required to induce such connectivity. This type of network
behavior allows the generation of “six degrees of separation” type results
(Watts, 2003), whereby any agent can connect to any other agent in the
system via a path consisting of only a few intermediate nodes.

Next, we explore some simple network structures and examine their
implications for two of the models we have already considered: the
Majority Rule model and Schelling’s Segregation model. We consider four
different network structures:

• Loop: agents live on a circle and are connected to their immediate
neighbors in each direction.

• Grid: agents live on a checkerboard-like grid where the edges of
the grid wrap around to form a torus. An agent is connected to its
immediate neighbors.

• Pack: agents exist in packs. Each agent is connected to its pack
mates, as well as one agent outside of the pack.

• 2Loop: agents live on two circles (both randomly ordered) and
are connected to their nearest neighbors in each direction on both
circles.
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1 2 x 3 4

Figure 9.1. A segment of a Loop network. Agents live on a circle and, in this
case, are connected to their two nearest neighbors on each side.

The Loop network is a common structure used in modeling. We have
used it in our models of forest fires and segregation. In the Loop network,
agents live on a circle and are connected to their nearest neighbors in
each direction. A segment of the circle can be represented by a line
as seen in figure 9.1. In real social worlds, a Loop structure might be
appropriate for some (literal) neighborhood issues, such as the exterior
color choices of the houses, the planting of gardens, lawn maintenance
practices, and whether homeowners put up holiday lights. The Loop’s
regular structure greatly simplifies mathematical analysis; for example,
in our earlier models of Majority Rule, these types of networks induced
neighboring agents to take the same actions as one another, resulting in
large, contiguous spatial chunks of identical behavior.

Glaeser, Sacerdote, and Schienkman (1996) used a Loop network and
an assumption of majority rule to capture the spatial nature of criminal
activity. In their model, each agent begins as either a criminal or a law
abider. Initially, criminals are randomly distributed around the circle.
Agents are then allowed to alter their behavior so that it agrees with
the neighborhood majority.

It can be shown that even in networks with similar initial distributions
of criminals, you can get very different final distributions of criminal
behavior: some worlds become crime ridden while others become rela-
tively crime free. This suggests that high crime rates in one area could be
an artifact of unfortunate historical accidents rather than some difference
in initial criminal behavior.

In figure 9.2 we illustrate two Loop networks that have the same
number of criminals (action 1) but in different configurations. We assume
that the agents look to their two nearest neighbors on each side and adopt
the majority action. In the first network the society is slowly taken over
by criminals, due to the driving forces induced by the criminals located at
the left- and right-hand sides. In the second network the system maintains
its initial state, stabilizing on the original number of criminals. As is clear
from this example, to understand why one neighborhood becomes crime
ridden while another does not, requires knowledge of both the initial
predispositions of the agents as well as the structure of the influence
network.

In the Grid network agents reside on a checkerboard. The top edge of
the board is connected to the bottom edge, while the left side is connected
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Network #1 (initial state)
1 0 1 0 1 0 1 0 1 0 1 1

Network #1 (final state)
1 1 1 1 1 1 1 1 1 1 1 1

Network #2 (initial and final state)
1 1 1 1 1 1 1 0 0 0 0 0

Figure 9.2. Dynamics of a Loop network. Each agent takes the majority action
of the group formed by itself and one neighbor on each side. Here action 1 is
becoming a criminal and action 0 is remaining law abiding. Agents update
simultaneously each period.

to the right, causing the grid to take the form of a torus. An agent is
connected to its immediate neighbors. The Grid is a simple extension
of the Loop with agents being connected to their immediate neighbors
(using two dimensions rather than one).

The Grid is a natural structure for activity that takes place on a flat
geography (and it is also easy to represent on chalkboards and computer
screens). Perhaps the most famous Grid model is the Game of Life
(in this case the agents are influenced by the eight adjacent cells). Our
earlier Standing Ovation model also relied on a Grid network.

In the Pack network agents live in tight cliques of mutual friends, as
depicted in figure 9.3. Each pack is arrayed in a Loop network (thus,
at each location on the circle is a pack rather than an individual).
Within each pack, agents are connected to all of their pack mates.
Agents are also connected to one other agent outside of their pack. To
keep the arrangement regular, this outside connection is always to the
corresponding member in the next pack ahead on the loop.

To formalize this network, consider a world with sn agents where s
is the number of agents in each pack and n is the number of packs. We
can number the packs from 1 to n and the agents within any given pack
from 1 to s. Each member of pack is connected to all of its pack mates as
well as its corresponding number in the next highest pack (or, in the case
of pack n, the agent in pack 1). A Pack network has a small-worlds-like
structure—each agent has a group of localized connections along with
one connection outside of the local group.

Our final network, the 2Loop, consists of two distinct Loop networks.
In both loops, agents are connected to nearest neighbors on each side.
Agents are initially placed on each loop in random order. Thus, the
nearest neighbors on the two loops are not necessarily related to one
another.
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x(i,1) x(i,2) x(i+1,1) x(i+1,2)

x(i,3) x(i,4) x(i+1,3) x(i+1,4)

Figure 9.3. Part of a Pack network with four agents per pack. Each agent is
connected to its three other pack mates, as well as the corresponding pack
member in the next highest pack. Thus, agent xi, j is connected to all of the
other agents in pack i as well as agent xi+1, j .

The 2Loop network enables us to capture the effects of overlapping
relationships in a network. For example, a teenage child may feel social
influences from both her family and her friends.

9.5.1 Majority Rule and Network Structures

To explore how network structure influences system behavior we return
to our Majority Rule model. In this model each agent must choose an
action in {0, 1}. Agents switch their action if they find themselves in the
minority. Here we assume that agents update their actions synchronously,
though we again note that updating rules can influence the behavior of
the model (see, for example, Huberman and Glance, 1993, and Page,
1997).

computational results

We first explore the model using computational experiments. We
assume four hundred agents (the qualitative findings seem to be invariant
across wide variations in this value). Recall that in each network, each
agent has exactly four connections. Thus, any differences in outcomes
are due to networks.

Define conformity as the percentage of agents taking action 1.
Table 9.6 shows the average (across 1,000 trials) equilibrium conformity
observed under the four different network types. As expected, initial
conformity and equilibrium conformity are positively correlated. How-
ever, we see significant differences in conformity across the different
network types. Given any initial level of conformity, we find that 2Loop
networks tend to generate the highest equilibrium conformity followed
by the Grid, Pack, and finally Loop network structures.

Features of the underlying network topologies can be used to explain
the differences in conformity observed. In particular, note that the
different network structures imply very different patterns of shared
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Table 9.6
Equilibrium Conformity across Different Network Structures: Averages (Stan-
dard Deviations) across 1,000 Trials

Initial % Grid Loop 2Loop Pack

51 53.24 (0.23) 51.94 (0.27) 53.29 (0.20) 52.40 (0.28)
55 65.37 (0.25) 60.50 (0.26) 66.29 (0.19) 61.53 (0.27)
65 87.79 (0.29) 79.61 (0.15) 91.62 (0.15) 81.79 (0.18)
75 97.15 (0.31) 92.48 (0.06) 99.41 (0.09) 93.47 (0.04)

Note: Each of the 400 agents were randomly assigned action 1 based on the probability
given in column 1. The system was then allowed to run until the conformity measure
stabilized.

relationships. To make this concrete, we can count the intersection
of an agent’s connections (including itself) to the connections of its
connections—call the average of this number the overlap of the network.
For example, consider an agent in a Loop. A nearest neighbor has
connections to four agents in common; the next nearest neighbor shares
three connections. Thus, the overlap is equal to 3.5. In a Pack, the three
neighbors in the same pack share four agents in common, and the one
in the other pack has none; therefore, the overlap is 3.0. In a Grid, each
neighbor shares only two common connections, leading to an overlap of
2.0. In a 2Loop, each neighbor typically shares two connections as well,
resulting in an overlap of 2.0.7

The larger amount of overlap in the Loop and Pack networks provides
a certain degree of insularity in the system. When the overlap is high, once
the agents that overlap form a majority they will maintain it. Thus, once
three or more consecutive agents in a loop take the same action, they will
lock into that action regardless of outside forces. Similarly, three pack
mates taking the identical action are insulated from the activities of the
other packs. Thus, as the amount of overlap increases, we would expect
more diversity in overall actions across the groups, and thereby lower
conformity. That is exactly what table 9.6 shows. The Loop and Pack
networks have the least conformity.

analytic results

In recent years, complex systems scholars have proved many mathe-
matical results about the structure and function of networks. Here we
illustrate how to derive some analytic results using two of the network
structures we have described.

7Because the agents are randomly placed on the two loops, there is some probability
that neighbors will be neighbors of each other, which would cause the 2Loop overlap to
rise above 2.0.
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Period 1: M 0 1 M 1 1 M M M 1 M 0 M 1

Period 2: 0 0 1 1 1 1 M M 1 1 0 0 1 1

Period 3: 0 0 1 1 1 1 M 1 1 1 0 0 1 1

Period 4: 0 0 1 1 1 1 1 1 1 1 0 0 1 1

Figure 9.4. Two-Pack dynamics. Each pack consists of two agents, each of
whom is connected to the corresponding pack member in the pack ahead. In a
given pack, agents are either both taking action 0, both taking action 1, or
doing opposite actions (M). Given the dynamics of the model, once a pack does
0 or 1 it will lock into that behavior forever. Packs doing M always copy the
current behavior of the pack ahead next period.

We begin by proving a result for our Pack model. Consider a version
of the model where each pack has two members. As before, each agent
is connected to its pack mates (here, the one other agent in the pack)
as well as to the corresponding agent in the pack ahead. Note that the
connection outside of the pack influences an agent’s behavior only when
the agent and its fellow pack mate take different actions. If the agent and
its pack mate ever take the same action, the two of them will be locked
in majority agreement thereafter.

Suppose that an agent is doing the opposite of its pack mate. In this
case, it will always copy the action of its corresponding agent in the
pack ahead.8 Given that both members of the pack follow this behavior,
this implies that whenever the two pack mates disagree on actions, then
in the next period the pack will mirror the current behavior of the
pack ahead of it in the loop.

Figure 9.4 illustrates these dynamics. Initially, agents take random
actions. In the next period, packs that have both agents doing the
identical action (designated in the figure as either 0 or 1 depending
on the common action) remain unchanged; packs that are mixing their
actions (M) copy the behavior of the pack ahead. Thus, as long as at
least one pack has agents doing the identical action, the system will
eventually converge to an equilibrium where each pack has its agents
taking identical actions, though the chosen actions may vary from pack
to pack.

8If the agent in the pack ahead is doing the opposite action, then the agent in question is
in the minority and will want to change its action. If the agent in the pack ahead is doing
the same action, then the agent in question will try to remain in the majority by not altering
its action.
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Given the dynamics, packs that end up with both agents taking
action 1 do so via one of two possible routes. The first route is for
both agents in the pack to have initially started out by taking action 1.
The second route requires both agents to initially do opposite actions
but eventually end up copying the pack ahead with both of its agents
taking action 1. Using this reasoning, we can make the following claim
for systems consisting of infinite numbers of packs:

Claim 9.5.1 In the two-neighbor Pack model, the final conformity equals
p2

1−2p+2p2 , where p equals the initial probability that an agent takes
action 1.

To understand this claim consider the following. The initial probability
that the two agents in a pack both take action 1 equals p2 and the
probability of them both taking action 0 is (1 − p)2. Therefore, of all
packs that have members doing the identical actions, p2

1−2p+2p2 of them
have the agents coordinating on action 1. This probability also represents
the chance that any pack that begins with its agents doing opposite
actions will find the first coordinated pack to its right coordinating on
action 1. Therefore, in equilibrium the proportion of packs coordinat-
ing on action 1 will be given by p2

1−2p+2p2 . This proportion equals
the conformity because all of the remaining packs are locked into
action 0.

Conveniently, this same type of constructive proof can be extended
to any Pack network with an even number of agents in each pack. If a
majority of the agents in the pack takes the same action in one period,
thereafter all agents in the pack will take that action. If the agents in
the pack are split evenly between the two actions, then they all copy
the respective actions of the pack members ahead. Thus, in a four-
neighbor Pack model, final conformity equals 4p3−3p4

1−6p2+12p3−6p4 .9 This latter
analytic result accords well with our computational results; for example,
with p= 0.65, the theoretical conformity equals 81.65 percent while the
computational experiments generated a value of 81.79 percent.

We can perform a similar analysis for the Loop network. Again,
consider a two-neighbor version to keep the mathematics tractable. As
before, assume that the initial probability that an agent takes action 1

9The initial probability that a majority of the pack will take action 1 equals p4 +
4p3(1 − p) = 4p3 − 3p4. The probability that a pack has a majority of its members
taking action 0 equals (1 − p)4 + 4p(1 − p)3 = 1 − 6p2 + 8p3 − 3p4. The result follows
immediately.
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equals p. In a two-neighbor Loop, any two neighboring agents that take
the identical action will do so forever, as they form a majority with one
another. Given this, we can derive the equilibrium conformity:

Claim 9.5.2 In the two-neighbor Loop model, the final conformity equals

2p2 + p3 − 3p4 + p5

1 − p2 + 2p3 − p4

To prove this claim, consider the following. First, note that any agent
that takes the same action twice in a row will do so forever, as it must
be the case that at least one of its neighbors is doing the same action.
Given this, any given agent can find itself in one of four possible states:
it has just switched and taken action 1, it is locked into action 1 forever, it
has just switched and taken action 0, or it is locked into action 0 forever.
Second, note that any agent that has just switched to a different action
will either lock into that action forever or switch to the alternative action
in the next period. If an agent has just switched to action 1, then with
probability ρ1 = 1 − (1 − p)2 = 2p − p2 at least one of its neighbors
will take action 1, locking the agent in question into doing action 1
forever; otherwise, with probability ρ2 = (1 − p)2 = 1 − 2p + p2 it will
switch to action 0. If an agent has just switched to action 0, it will either
stay at zero forever, or with probability ρ3 = p2 it will switch back to
action 1.

Let Wt and Zt give the proportion of agents that have just switched
to taking actions 1 and 0 respectively in period t. (Note that W0 = p
and Z0 = 1 − p.) Because ρ1 is the probability that an agent that
has just switched to doing action 1 will lock into doing it forever,
Wtρ1 gives the proportion of agents that are newly locked into doing
action 1 at time t + 1. For this claim, we want to know the asymptotic
proportion of agents that have locked into doing action 1, which is given

by
∑∞

t=0 Wtρ1. For odd values of t, it can be shown that Wt = Z0ρ
t−1

2
2 ρ

t+1
2

3 .

For even values of t, Wt = W0ρ
t
2
2 ρ

t
2
3 . Note that

∑
todd

Wt = Z0
ρ3

1−ρ2ρ3
and

∑
teven

Wt = W0
1

1−ρ2ρ3
. Therefore,

∑∞
t=0 Wtρ1 = (Z0

ρ3
1−ρ2ρ3

+ W0
1

1−ρ2ρ3
)ρ1,

which, after substituting and simplifying, gives the required result.
Using these results, we can compare the expected conformity in the

two-neighbor Loop and Pack networks:

Claim 9.5.3 A two-neighbor Pack network leads to higher conformity
than a two-neighbor Loop network.
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Based on the prior two claims, this claim holds if and only if

p2

1 − 2p + p2
>

2p2 + p3 − 3p4 + p5

1 − p2 + 2p3 − p4
.

Multiplying through and simplifying this inequality reduces it to

1 − 3p + 7p3 − 7p4 + 2p5 < 0.

We can factor the left-hand side as (1 − 2p)(1 − p)2(1 + p− p2). Because
the first term is negative for p > 0.5 and the next two terms are positive
for all p, the product of the three terms must be negative verifying the
claim. This claim is consistent with what we found computationally for
larger networks, namely that Pack networks lead to higher conformity
than Loop networks.

9.5.2 Schelling’s Segregation Model and Network Structures

We next analyze Schelling’s Segregation model under alternative network
structures. In the model there are two types of agents, A and B, who
initially occupy random locations in the network. Exactly half of the sites
are inhabited by residents. Each agent only cares about the percentage
(of all occupied sites) of its neighbors that are of the same type. If this
percentage falls below 40 percent, then the agent will randomly relocate
to an unoccupied location.

Given the geographic nature of Schelling’s model, we restrict our
analysis to the Loop, Grid, and Pack networks (the 2Loop network does
not naturally lend itself to a sensible geography). In each network agents
are connected to eight others. For the Loop network, you can think
of houses around a lake, along a shore, or surrounding a park, where
each agent incorporates the types of its four nearest neighbors on each
side into its decision to move. The Grid topology was used by Schelling
in his original paper and, like Schelling, we allow the neighborhood
to consist of all eight adjacent locations. Finally, the Pack network
emulates a city that is composed of distinct neighborhoods. In such a
world, even physically adjacent houses might be located in “different”
neighborhoods. In the model, each pack (“city block”) is composed of
eight agents.

Recall that the main finding of the earlier Segregation model is that the
system easily becomes segregated even though each agent is tolerant of
the other type. Perhaps this result is due to some peculiarity of the Grid
network used by Schelling? Surprisingly, we find that the Grid network
understates the tendency toward segregation. Recall that segregation
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Table 9.7
Segregation across Different Network Structures

Grid Loop Pack

Segregation 75% 78% 80%

Note: Segregation is the percentage of like-type neighbors after equilibration, averaged
across all of the agents in the system. Each network had 400 agents (the Grid was 20 by
20 and the Pack had 50 packs of size 8), and the values represent averages across 500 trials
(all differences are statistically significant).

Table 9.8
Tipping across Different Network Structures

Grid Loop Pack

Tipping 14% 20% 31%

Note: The tipping measures are averaged across 500 trials. The networks were identical
to those described in table 9.7.

is the average percentage of an agent’s same-type neighbors after the
system equilibrates. As can be seen in table 9.7, both the Loop and Pack
networks lead to higher measures of segregation in the system.

The Grid network also leads to the lowest amount of tipping across
the three systems. Here tipping equals the percentage of agent relocations
that were induced by any initial moves. Thus, if the initial moves result
in a lot of subsequent movement, the tipping measure will approach
100 percent. In table 9.8 we see that tipping is positively correlated with
the equilibrium levels of segregation observed in table 9.7.

To understand these results we can again use the idea of network
overlap. Of the eight connections to an agent in a Pack network, seven
share the same eight neighbors and one shares none, giving an overlap
of 7.0. In the Loop network, two connections share eight neighbors, two
share seven, two share six, and two share five neighbors, implying an
overlap of 6.5. In the Grid network, four connections share six neighbors
and four share four neighbors producing an overlap of 5.0.

As overlap increases there is more pressure to segregate, since like-
types beget like-types given the greater connectivity among the set of
agents. This also implies that we will see more tipping, as once a
relocation forces one person to move, it is likely to cause the remaining
neighbors to relocate.

In both the Majority Rule and Segregation models, we see that network
structure has a large impact on the behavior of the system: different
networks induced very different systemwide behavior. Although it is
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often difficult to characterize different network topologies succinctly, we
found that our measure of overlap provided a coherent basis from which
to unravel the link between networks and behavior in both of the models.

This analysis of network structure is by necessity rather brief. Nonethe-
less, it illustrates how network structure can have a big influence on a
system’s behavior. Moreover, it shows how certain inherent character-
istics of networks, such as agent overlap, can provide insight across a
variety of systems. Models that ignore networks, that is, that assume all
activity takes place on the head of a pin, can easily suppress some of
the most interesting aspects of the world around us. In a pinhead world,
there is no segregation, and majority rule leads to complete conformity—
outcomes that, while easy to derive, are of little use.

9.6 Self-Organized Criticality and Power Laws

One of the hallmarks of complex systems is the aggregation of local
actions into well-defined global patterns, such as cities, neighborhoods,
and voting blocks. One such generic pattern, which characterizes many
natural and artificial systems, is a distribution of activity characterized
by a power law. A system is subject to a power law when Prob[X =
x] ∼ x−k. If x is the number of occurrences of some event of a particular
size, then a power law would imply that the likelihood of this event is
proportional to the size of the event raised to the −kth power. Thus, if
k = 1, events of size 100 are one-hundredth as likely as events of size 1.
This implies that power-law-governed systems are characterized by many
small events and a few, rare big ones.

Power-law-like behavior has been found in a variety of systems,
including the use of words in texts (in English, a few words like “the” and
“of” are used very frequently), the distribution of income in a society,
the size of cities, and the magnitude of earthquakes and forest fires.
An example of a social power-law distribution comes from Richardson’s
(1960) studies on war. Table 9.9 shows data on war casualties. At first
glance, there does not seem to be much of a pattern to these data. If
we rely on the exponential approximations shown in the parentheses,
however, we see that as the number of deaths decreases by a factor of
ten, the number of wars increase by a factor of three. (A fairly good
prediction of the number of wars, Wi , with a given number of deaths, Di ,
is given by the power law Wi = 6517D−1/2

i .)
Empirically, we often find examples that satisfy a power law with

the exponent equal to −1. One such case is the relationship between
city population, Pi , and rank, Ri . Roughly, this relationship is given by
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Table 9.9
Richardson’s (1960) Data on Deaths in Warfare, 1820–1945

Approximate
Number of Deaths Number of Wars

10,000,000 (= 107) 2 (≈ 2 × 30)
1,000,000 (= 106) 5 (≈ 2 × 31)
100,000 (= 105) 24 (≈ 2 × 32)
10,000 (= 104) 63 (≈ 2 × 33)
1,000 (= 103) 188 (≈ 2 × 34)

Pi = cR−1
i , where c is a constant. This equation implies that city size

times rank is a constant (that is, Pi Ri = c for all i), and thus the ith
ranked city has 1/ i of the population of the largest city.

Power-law distributions are just one member of a class of fat-tailed
distributions. A distribution has fat tails if the probabilities of extreme
events are “abnormally” high, where by abnormally we mean literally
not like a normal distribution. If we assume that a distribution is normal
when indeed it is fat-tailed, then we will grossly underestimate the
potential for extreme events (and discount those that do happen as rare
anomalies). Suppose that we observe a system, like an aircraft or power
distribution network, that routinely experiences a few failures. If we
believe that the failures are driven by a normal distribution (here, with
low mean and variance), then we would expect that on most days we
will have only a few failures and on rare occasions experience some bad
days with lots of failures. On the other hand, if a fat-tailed distribution
underlies the system, then days with very high numbers of failures are
far more likely than we would expect. A fat-tailed view of social systems
would imply that the outbreak of large-scale wars, the overthrow of a
government, a “correction” in the stock market, and similar events are
driven by forces that are quite different from what we usually assume.

A number of theories suggest why we might see power-law-like
behavior. For example, Simon (1955) constructed a simple model to
explain the city-size distribution. He assumed that the probability of a
new resident joining a city is proportional to the city’s size—a simple
and plausible assumption. Given this assumption, it can be shown that a
power-law distribution results.

An alternative approach to explaining power laws, developed by Bak
and his colleagues (see Bak, 1996, for a general reference), focuses on the
notion of self-organized criticality. The microfoundations of this model
appear quite plausible in many social scenarios. Moreover, this approach
is of particular interest to us because it is formulated around an agent-
based spatial model.
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The key driving force behind self-organized criticality is that microlevel
agent behavior tends to cause the system to self-organize and converge
to critical points at which small events can have big global impacts. Such
critical points are familiar to anyone who has ever built a house of cards;
while initially such constructions go quite smoothly, at some point the
structure goes critical and even the slightest jiggle causes it to collapse.
Similarly, in self-organized critical systems, the agents throughout the
system tend to be poised in critical states where small disturbances can
trigger large relaxation events that may encompass any number of agents.
Consider a city of card houses, with each house spaced close enough to
the others so that if it falls some of its cards will hit the neighboring
houses. As we add a card to a random house, it either becomes a bit
more unsteady or falls. Sometimes when a house falls, its neighbors are
steady enough not to be disturbed, while at other (much rarer) times, all
of the houses are a bit shaky and the collapse of a single house propagates
across the entire city and everything comes tumbling down. Intuitively,
one can imagine that the behavior of such a system (measured by the
number of houses that fall in any given period) might correspond to a
power law.

9.6.1 The Sand Pile Model

Bak’s original thought experiment for self-organized critical phenomena
involved a table that is randomly sprinkled with sand. As the sand
accumulates, it forms a pile that eventually reaches its angle of repose.
At this point the pile is critical, and additional grains start localized
avalanches that often result in some grains falling off of the table. If
we plot the distribution of the number of grains of sand that fall onto
the floor each period, we find that we get a power law with an exponent
of −1.10

To construct an even simpler model of self-organized criticality, we
assume that agents are arrayed on a one-dimensional linear lattice.
We assume that each location can hold at most T − 1 grains of sand,
and when it receives its Tth grain, it topples and sends a single grain of
sand to each of its neighbors within k sites.11 Thus, if T = 6 and k = 2,
upon receiving its sixth grain of sand the site will topple and send out
four grains of sand, one each to the two immediate neighbors on the

10Physicists have conducted experiments using various particles (see, for example, Frette
et al., 1996). Experiments with sand are not consistent with the predicted behavior, most
likely due to confounds from shape and water content. Systems composed of certain types
of rice do appear to generate the predicted properties.

11To ensure enough sand to go around, we need T ≥ 2k.
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Table 9.10
Self-Organized Criticality with T = 6 and k = 2

Ejected
Action Configuration Particles

Initial configuration 4 3 2 4 5 5 0
Add a particle to site 5 4 3 2 4 6 5 0
Initial toppling (site 5) 4 3 3 5 2 6 1
Next toppling (site 6) 4 3 3 6 3 2 2
Final toppling (site 4) 4 4 4 2 4 3 0
Add a Particle to site 6 4 4 4 2 4 4 0
Final configuration 4 4 4 2 4 4 0

Initial configuration 4 3 2 4 5 5 0
Add a particle to site 6 4 3 2 4 5 6 0
Initial toppling (site 6) 4 3 2 5 6 2 2
Next toppling (site 5) 4 3 3 6 2 3 1
Final toppling (site 4) 4 4 4 2 3 4 0
Add a particle to site 5 4 4 4 2 4 4 0
Final configuration 4 4 4 2 4 4 0

right and the two on the left. Any sand that flows over the end points is
assumed to be lost to the system.

During each time period a single grain of sand is added to a randomly
chosen site. In table 9.10 we show some sample dynamics for this system.
The upper and lower panels of the table differ in the order (but not
the location) of the two particles we added to the system. Note that the
final configuration and the total amount of sand ejected from the pile are
identical in these two scenarios. This observation will hold in general for
this model, as it is a member of a class of Sand Pile models that has the
Abelian group property (Moore and Nilsson, 1999). This insensitivity
to order implies that many updating methods, such as location-based
asynchronous and synchronous approaches, become equivalent. Thus, in
this model many of the agent-interaction details do not matter.

Even the one-dimensional model can generate some amazing patterns
of toppling. Consider the case where T = 4 and k = 1 and every site has
exactly three grains of sand. If we drop a grain of sand at the left edge
of the lattice, one grain falls off of this edge and the other one topples
the site on its right, which in turn topples the next site, and so on, and
it is as if the sites were acting like a long series of dominoes falling in
order. If we add a grain to the center of the lattice, however, we see
waves of topplings, as shown in table 9.11. These topplings resemble the
disturbances in a pool when a stone is dropped in the middle and the
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Table 9.11
Self-Organized Criticality with T = 4 and k = 1

Action Configuration

Initial configuration 3 3 3 3 3 3 3
Add a particle to site 4 3 3 3 4 3 3 3
Wave 1 3 3 4 2 4 3 3
Wave 2 3 4 2 4 2 4 3
Wave 3 4 2 4 2 4 2 4
Wave 4 2 4 2 4 2 4 2
Wave 5 3 2 4 2 4 2 3
Wave 6 3 3 2 4 2 3 3
Stability 3 3 3 2 3 3 3

resulting waves move outward until they bounce off of the pool’s edges.
Once stability is achieved in the system, we see that the sites resemble
the initial configuration with the loss of only a single grain of sand in the
middle position.12

One key question is how the two parameters of the model, T and k,
influence its behavior. Increasing T has almost no effect on the system.
This is not surprising, since T plays a role only in the early stages of the
dynamics, and once a site has more than T − 2k grains, it never falls
below that amount. The more interesting area for investigation is the
impact of k. To investigate this issue, and to gain some more insights into
the fundamentals of the model, we next consider a very simple sand pile.

9.6.2 A Minimalist Sand Pile

Consider a one-dimensional sand pile with N sites, where each site can
contain at most one grain of sand (therefore, T = 2). If a site acquires
two grains of sand, it topples and sends one grain into each of its nearest
neighbors (thus, k = 1). This minimalist sand pile not only displays many
of the key behavioral features common in the more complicated self-
organized critical systems, but it is also mathematically tractable.

To begin the analysis, note that the system will not experience any
toppling as long as its sites have either zero or one grain of sand each.
Second, consider the immediate impact of adding a grain of sand to a
site. There are only a few possible cases. First, if the site is empty, it just

12The system actually discharges two grains—one off of each end—but we added a grain
to get the waves going.
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becomes filled with no other impact on the system. If the site is filled, it
will topple, and its neighbors either become filled (if they were empty)
or topple (if they were filled).13 From these observations we can gain
intuitions on larger-scale dynamics. For example, if we have a lattice of
all ones with one zero, then if we add a grain to a site adjacent to the
zero, we will see the zero “walk” toward the side of the lattice where the
grain was added; thus, if we have 101111 and add a grain at site 3, we
see 102111, 110211, 111021, 111102, and 111110.

Moore and Nilsson (1999) prove the following:

Claim 9.6.1 If you have empty sites at j and k (with j < k) and filled
sites in between these two, then if you drop a grain of sand at one of the
intermediate sites, h (where j < h < k), then j and k will become filled
and the site at j + k − h will become empty.

When applying this claim, we consider sites 0 and N + 1 (the sites just
off of the edges of the lattice) to be empty. Thus, in the preceding example
with the lattice 101111, sites 2 and 7 are empty, so when we add a grain
to site 3, site 2 will fill and site 6 (2 + 7 − 3) will empty.

Claim 9.6.1 has some important consequences for this system. First, as
noted previously, whenever we add a grain to an empty site, it becomes
filled and no other impacts occur. If we add a grain to a filled site, claim
9.6.1 applies (since the filled site must be bounded somewhere by empty
sites), and the two empty sites will fill and one of the intermediate sites
will empty. If the two empty sites bounding the filled sites are both on the
interior of the lattice, then the lattice will gain one filled site. If only one
bounding site is in the interior, then the lattice will maintain the same
number of filled sites, and the interior boundary will move toward the
associated end point by at least one site. If the two boundaries are not in
the interior, that is, if the lattice is completely filled, then the system will
be left with a single empty site. Given this behavior, the following claim
can be made:

Claim 9.6.2 The system will converge to a configuration with at least
N − 1 sites filled.

Claim 9.6.2 follows from the observation that if there are more
than two empty interior sites, additional grains must either increase the
number of filled sites by one or move the empty sites toward the edges.

13For the two sites on the end points of the line, we can assume that the “neighboring
site,” just off of the edge of the lattice, is perpetually empty.
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Table 9.12
An Avalanche with T = 2 and k = 1

Configuration

1 1 1 1 1 1 1 0 1 1
1 1 2 1 1 1 1 0 1 1
1 2 0 2 1 1 1 0 1 1
2 0 2 0 2 1 1 0 1 1
0 2 0 2 0 2 1 0 1 1
1 0 2 0 2 0 2 0 1 1
1 1 0 2 0 2 0 1 1 1
1 1 1 0 2 0 1 1 1 1
1 1 1 1 0 1 1 1 1 1

Note: The initial grain falls on site 3.

Since once the system has all but one site filled, an additional grain either
changes the position of the empty site or fills the entire array (if the grain
lands directly on the empty site). In this latter case, the next grain will
create a single empty site.

This claim leads to an important insight. In general, there are 2N

possible configurations of a binary lattice like the one in this model.
However, claim 9.6.2 implies that after a while, the system will be in
one of N + 1 configurations (the lattice can have an empty spot at one
of N possible sites or it can be completely filled). For example, in the
case of N = 30, we have taken a space of more than a billion possible
configurations and reduced it to thirty-one.

9.6.3 Fat-Tailed Avalanches

We can use the preceding analysis to consider the distribution of
avalanches. To begin this analysis, consider the behavior of our mini-
malist sand pile (with N = 10), shown in table 9.12. A grain of sand is
dropped on site 3, and an avalanche begins. The initial toppling causes
two waves to propagate outward. These waves will continue outward
until they are reflected back by hitting an empty site (or, equivalently, an
edge). The waves will stop once the two leading edges of the reflections
meet.

The waves move one site during each iteration, so the two leading
edges are either diverging or converging by two sites each iteration. The
sites bounded between the leading edges will alternate between being
empty and being ready to topple, and the system will stabilize once the
two reflections meet. Because each wave moves either outward or inward
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by one site per period, and the total distance between the boundaries is
seven, the waves must meet after seven iterations. Each wave will have
covered seven sites in this time period (and since they both began at site 3,
the waves will meet at site 5 and destroy each other).

There is an easy way to count the number of topples caused by the
addition of the grain of sand. In the case shown in table 9.12 there were
fifteen topples. Let M equal the number of contiguous filled sites bounded
between the two empty sites. Let d give the distance between where the
initial grain lands and the nearest edge14 inclusive. (Thus, this distance
is given by the number of sites between where the grain lands and the
edge plus one.) As can be inferred from table 9.12, during the initial
propagation of the wave, we will see 1, 2, . . . , d sites topple, implying a
total of d(d + 1)/2 toppled sites. The same values, only in reverse, will
happen at the end of the waves. Finally, in between these two end points,
a period lasting M − 2d iterations, we will have d topples each iteration.
Summing these values we get:

Claim 9.6.3 Dropping a grain in a block of M consecutive filled spots
will result in a total of d(M − d + 1) topples, where d is the number of
sites in from the nearest edge where the initial grain landed.

From claim 9.6.3 we can derive the exact distribution of avalanche
sizes. From claim 9.6.2 we know that we will eventually get to a config-
uration with only one or no empty spots, so we can concentrate on these
N + 1 configurations. Label these configurations A0, A1, A2, . . . , AN,
where Ai is the configuration with the ith site empty and A0 is the
configuration with no empty sites. Note that by using claim 9.6.1 it is
easy to show that if we are in configuration Ai and we add a grain of
sand to a random location, then we are equally likely to end up in any of
the possible configurations.

For concreteness consider a lattice with N = 10. From any config-
uration, we can use claim 9.6.3 to calculate the number of topples as a
function of where the grain lands. We do so in table 9.13 and figure 9.5,
where each row is for a different landing spot. Since the system will spend
an equal amount of time on average in each of the eleven configurations,
we can compute the long-run frequency distribution just by counting
the frequencies in the table. Table 9.14 gives this theoretical distribution
and an estimated distribution from an experiment in which we dropped
100, 000 grains of sand.

14It turns out that the formula we develop here is symmetric around the distance, so d
can be the longer distance as well.
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Table 9.13
Avalanche Size Given Landing Spot and Configuration

Landing
Spot A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A0

10 9 8 7 6 5 4 3 2 1 0 10
9 16 14 12 10 8 6 4 2 0 9 18
8 21 18 15 12 9 6 3 0 8 16 24
7 24 20 16 12 8 4 0 7 14 21 28
6 25 20 15 10 5 0 6 12 18 24 30
5 24 18 12 6 0 5 10 15 20 25 30
4 21 14 7 0 4 8 12 16 20 24 28
3 16 8 0 3 6 9 12 15 18 21 24
2 9 0 2 4 6 8 10 12 14 16 18
1 0 1 2 3 4 5 6 7 8 9 10

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A0

� � � � � � � � � � �

� � � � � � � � � � 	

� � � � � � � � 	 
 �


 � � � � � � � � � 


� 	 � � � � � � � � �

� � � � � � � � 	 � �

� � � � � � � � � 
 



 	 � � � � � � � � �

� � � � � � � � � � 	

� � � � � � � � � � �

1

2

3

4

5

6

7

8

9

10

Figure 9.5. Graphical representation of avalanche size (larger circles represent
larger avalanches), given the particle’s landing spot (y-axis) and the system’s
initial configuration (x-axis).
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Table 9.14
Theoretical and Experimental (100,000 Trials) Avalanche Distribution for
N = 10

Avalanche Size Theory (%) Experiment (%)

1 2 2.0
2 4 3.9
3 4 3.9
4 6 6.1
5 4 3.9
6 8 7.9
7 4 4.0
8 8 8.0
9 6 6.0

10 6 6.0
11 0 0.0
12 8 8.1
13 0 0.0
14 4 4.0
15 4 4.0
16 6 6.0
17 0 0.0
18 6 6.0
19 0 0.0
20 4 4.1
21 4 4.0
22 0 0.0
23 0 0.0
24 6 6.0
25 2 2.0
26 0 0.0
27 0 0.0
28 2 2.0
29 0 0.0
30 2 2.1

The distribution in table 9.14 has fat tails, with the extreme events
having a fair amount of weight. Also, from claim 9.6.3 we know that all
avalanches are of size d(M−d+1), or in this case, d(11−d). This implies
that certain avalanche sizes will not occur; for example, we will never
have an avalanche greater than size 10 whose size is a prime number. If
we increase the size, N, of the sand pile, then the number of times that we
can have an avalanche of size R is roughly proportional to the number
of divisors of R. If we plot this, we do not get a power law exactly, but
the distribution does have fat tails.
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The preceding analysis also gives some intuition about the time
correlation we will see in avalanche size. The biggest avalanches we can
get are of size 30. These occur when all sites are filled (A0) and the grain
is dropped in the center (either at site 5 or 6), putting the sand pile in
configuration A5 or A6. In either of these states, the biggest avalanches
that we can get are only of size 9. Thus, after a large avalanche we will
see a small one. This type of correlation holds in larger models (including
those with bigger k) as well. Large avalanches tend to unleash sites that
are in critical or near-critical states and thus put the system in a state
where only smaller avalanches are possible.

9.6.4 Purposive Agents

The previous model considers grains of sand dropping at random. What
happens to the model with more thoughtful and directed agents? Suppose
that agents have the ability to choose a landing spot and know the
size of the resulting avalanche. Furthermore, assume that agents have
preferences for either large or small avalanches.

Suppose the falling agents want to cause small avalanches. If the initial
configuration is A0 then the agent will want to land on either edge so
as to generate an avalanche of size 10. The next agent will choose to
land on the empty site created by the first one and will avoid causing an
avalanche. The third agent is in the same situation as the first. Thus, we
will find the system alternating between avalanches of size 10 and 0, for
an average avalanche of size 5.

Alternatively, suppose the agents want to cause large avalanches. If the
system is in A0, the first agent will land at either site 5 or 6 and cause an
avalanche of size 30. Suppose its choice leaves the system in A5. In this
case the next agent will want to land at site 8 and cause an avalanche
of size 9. The system is now at A8 (5 + 11 − 8 = 8), so the next agent
will choose site 4, causing an avalanche of size 16 and putting the system
in configuration A4 (0 + 8 − 4 = 4). From here site 7 or 8 is the best
choice, producing an avalanche of size 12. If we pick site 7, we return
the system to A8 (4+11−7 = 8).15 Thus, we lock into a cycle of length 2
that alternates between A8 and A4 with associated avalanches of size 16
and 12.

Therefore, if agents attempt to maximize the the size of each avalanche,
they fall into a two-cycle pattern with an average avalanche size of 14.
However, this assumes that the agents play the game myopically, as better
alternatives exist if they can break out of the cycle. A socially better cycle

15Picking site 8 results in two potential cycles with either the same or slightly lower
payoffs.
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begins in state A0, followed by an agent landing on site 5 (or 6), resulting
in an avalanche of size 30, and then having the next agent refilling the
resulting hole and putting the system back in A0. This results in a cycle
with an average avalanche size of 15.

As these thought experiments show, with purposive agents the sand
pile becomes malleable. Indeed, it is possible for agents to generate
almost any distribution of avalanche sizes provided that they have
enough foresight (Ishii, Page, and Wang, 1999).

9.6.5 The Forest Fire Model Redux

There are many other ways to form models that exhibit self-organizing
criticality and fat tails. Consider the Forest Fire model discussed in
chapter 7. Recall that each site on a lattice either has a tree or is barren.
During each time period, barren sites grow a tree with probability g,
and sites that already have a tree in place remain unchanged. After any
new trees have grown, the fire season begins and there is an independent
probability of f that a flash of lightning will strike each site and ignite
its tree. Once a tree is ignited, it and any immediately adjacent trees
burn until the site becomes barren. Burning trees, in turn, ignite their
neighbors, and the fire will only be contained when it hits a barren site
(literally hitting a fire wall).

This model tends to a critical state where fires of all sizes are
exhibited, with the majority of fires being fairly small. On occasion, when
there have not been many fires for a while, a large conflagration that
encompasses most of the forest will occur.

Standard approximations of this problem that rely on the “expecta-
tions” of growth and fire are not able to capture the underlying statistics
very well. The problem is that these approximations do not adequately
account for the self- organization in the system. That is, lightning creates
coherent clusters of either barren land or trees that have an underlying
structure that is fundamentally different from the one approximated by
independent random events.

In the model, the randomness in the microlevel processes makes
possible coherent macrolevel patterns. These macrolevel patterns, while
being driven by randomness, are not random in the traditional sense. By
analogy, a rock is composed of atoms that are constantly shifting due
to random events; nonetheless, it tends to be a very coherent object. If,
by chance, each of the atoms on one side of the rock randomly shifted
in the same direction at the same time, that part of the rock would
instantaneously bulge outward. Notwithstanding the potential of such an
event, we can view the rock as a coherent, nonrandom structure, created
by a very incoherent randomness.
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9.6.6 Criticality in Social Systems

The preceding models demonstrate how power-law-like behavior can
emerge from systems of interacting agents. The generative mechanisms
underlying such models seem appropriate for certain types of physical
systems, like forest fires, earthquakes, mud slides, and floods, and
perhaps they could also be justified for some social phenomena, like riots,
traffic jams, and utility blackouts.16 That being said, other examples of
power-law-like behavior, such as city-size distributions and word counts
in texts, probably come from very different generative mechanisms and
thus may not be so easily explained by self-organized criticality.

Also, recall that adaptation can alter the critical behavior of a system.
We saw how purposive agents can completely change the dynamics of
the sand pile. We also found in chapter 7 that agents adapting their
growth rates in the Forest Fire model significantly change the system’s
behavior. A closer examination of this latter system indicated that the
locations tend to self-organize based on risk levels, with each location
becoming either an absolute risk taker or avoider. With adaptive agents,
the system configures itself in a way that mitigates the overall risk by
preventing criticality from emerging. In essence, the adaptive actions of
the individual agents lead the system away from the critical regime and
more toward what an omniscient designer attempting to balance risk and
stability would create.

In the Forest Fire model, the ability to adapt away from criticality
was facilitated by the stable spatial interactions among the agents. The
presence of risky neighbors forces an agent to avoid risk and, in the
process, become an inadvertent fire wall. If instead we were to randomly
scramble the locations each day, this coherence would be lost and we
would see a very different outcome. Some social systems have much more
stable interactions than others. Thus, we might expect that banks and
suburban neighborhoods will be able to develop adaptively the necessary
fire walls to prevent criticality, while the more transient relationships
inherent in, say, urban neighborhoods and highway travel will not.

The models explored in this and the previous chapter had a number
of key features. First, they crossed a broad swath of the complex systems
research agenda and embraced many of the key ideas that have emerged
in this area over the past decade or so. Second, they were presented
in a very simplified form, both to keep them accessible and to allow
one to make easy connections across the various domains. Finally, they
illustrated a variety of methodologies and concepts that lend insight into
how one can think about social science as a complex system.

16The theory offers little guidance as to why Los Angeles would embrace all of these
events.
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Evolving Automata

There is grandeur in this view of life, with its several powers,
having been originally breathed into a few forms or into one;
and that, whilst this planet has gone cycling on according to
the fixed law of gravity, from so simple a beginning endless
forms most beautiful and most wonderful have been, and are
being, evolved.

—Charles Darwin, Origin of the Species

Mistakes are the portals of discovery.
—James Joyce, Dubliners

Models where agents adapt their behavior based on experience are
very useful in the exploration of complex adaptive social systems. In
many social systems, agents are not static behavioral drones; rather,
they alter their behavior based on past feedback or the anticipation of
future events. A key scientific question is how does adaptation alter
the dynamics of complex systems. From a modeling perspective, the
introduction of adaptive agents provides a means by which to create
models that can explore new realms of agent behavior that transcend the
usual bounds imposed by the modeler. From a practical point of view, if
we can develop systems that are able to adapt effectively in a complex
social environment, then we can explore, design, and refine new complex
social systems, such as computer networks and auction mechanisms.

The approach we pursue here evolves agents controlled by simple
computer programs (Miller, 1988) using a genetic algorithm (Holland,
1975). Models based on artificial adaptive agents (Holland and Miller,
1991) have proved to be useful in a variety of social science fields,
including anthropology, economics, organizations, political science, and
sociology.

10.1 Agent Behavior

The behavioral substrate for our agents is based on simple computer
programs modeled by finite automata. Finite automata are mathematical
models of systems that have discrete inputs and outputs; such systems
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Figure 10.1. Two sample automata. States are given by the large circles,
transitions by the labeled arcs, and actions are shown in the interior of each
state. We assume machines start in the left-most state, and that states are labeled
starting at 1 from left to right.

capture a fundamental class of behavior rich in applications and possibil-
ities. Automata are sufficiently powerful that they can solve any problem
that can be solved by a computer.1

The specific type of finite automata we use are Moore machines,
though given the fundamental nature of these models, Moore machines
can be easily transformed into various alternatives. Formally, a Moore
machine is composed of a set of states S. Each state of the machine,
s ∈ S, is associated with an output (agent action) that is produced each
time the machine enters that particular state. Let λ define this association:
λ : S → A, where A is the set of allowable outputs. Also associated with
each state is a transition function, δ, that determines the next state that
the machine will enter based on the observed input: δ : S × A∼ → S,
where A∼ gives the observed input. Finally, let each machine begin in a
designated starting state (or initial state) prior to receiving any input.

A more intuitive description of a Moore machine is given by its
transition diagram. Figure 10.1 illustrates two sample automata. The
states of the automata are represented by the bold circles (and, for
convenience, we number them consecutively from left to right starting
at 1). The label inside each state gives the output that the automaton
produces when it enters that state. The labeled arcs show the transitions
among the states, with each label specifying a potential observed input.
We assume here that each machine starts out in the left-most state

1It can be proved formally that not all functions can be solved by a standard computer
(that is, not all functions are “computable”). We leave it as an open question whether any
of the functions that are of most interest to complex adaptive social systems, such as the
behavior of a typical social agent, are in this latter group.
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(state 1). Thus, the upper two-state automaton begins by producing
output c and continues that output as long as it receives input C. If the
input changes to D, however, the automaton enters state 2 and produces
d, and it will continue to produce this output as long as the input
continues to be D. This machine is a Tit-For-Tat machine that begins
by producing c and then subsequently mimics its opponent.

The three-state machine in the lower panel of the figure begins by
producing c and will continue with this output as long as the input does
not have two D’s in a row. If two consecutive D’s are observed, this
machine enters state 3 and takes action d regardless of any future inputs.
This machine implements a (somewhat tolerant) grim trigger strategy:
begin with c but, if the opponent ever persistently plays D, do d for the
remainder of the game.

Note that these finite automata do not have any stochastic compo-
nents. Since they can emulate any computation, it is possible, though
messy, to implement a pseudo-random-number generator within an auto-
maton. Such “random” behavior is embedded in the machine through
the addition of states. In practice, however, it is far easier to allow the
machine access to an external random-number device if needed. Access
to external random-number generators simplifies machine analysis, as
it is often difficult to disentangle states used for randomization versus
those of a more systematic nature. This problem becomes acute when
we rely, as is commonly done, on the number of states in a machine as
a proxy for complexity. While randomness is “complex” in some sense,
it is important not to confound a hundred-state machine that embeds a
sophisticated algorithm with one that is just trying to emulate a coin flip.

10.2 Adaptation

There are various ways to incorporate adaptation in our models. For
example, agents could have prior beliefs over potential behavioral
heuristics and update these beliefs as they experience payoffs, agents
could use nonlinear algorithms to recognize key opportunities for action,
and so on. Our goal here is not to provide a complete list of all of
the ways in which agents might respond and predict, but rather to
provide some examples of how to construct adaptive agents. Therefore,
we focus on using analogs to evolution in natural worlds as a way to
drive adaptation.

Evolutionary processes are relatively simple to implement and put few
demands on an agent’s abilities. Of course, the adaptive behavior of
agents in real systems may be driven by much more sophisticated mecha-
nisms than simple evolution. Nonetheless, the mechanisms explored here
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Selection
Reproduction
with Variation

Figure 10.2. The “theory of evolution.” During each generation, individuals in
the population undergo selection based on a measure of fitness. These fitter
individuals are then reproduced (amplified) with variation (perhaps from
mutation and other genetic operators like crossover), and the generation begins
anew.

represent a useful lower bound on adaptive behavior and serve as a
convenient way to model adaptation.2

Here we will rely on a very simple form of adaptation modeled
using a genetic algorithm (Holland, 1975; Mitchell, 1997, provides a
useful introduction). Genetic algorithms model adaptive systems that are
driven by variation and selection, analogous to the processes outline for
the natural world by Darwin’s theory (see figure 10.2). As in natural
adaptive systems, genetic algorithms rely on a population of solutions
that are replicated with random variations based on their performance
(see figure 10.3).

Genetic algorithms belong to a class of population-based search
algorithms. They do not have a single solution that keeps improving;
rather, they rely on a pool of potential solutions. To employ a genetic
algorithm, we must first develop a useful representation of the potential
solutions. There are usually a variety of ways to represent such solutions.
Good representations are those that admit a broad class of potential
solutions, so as not to unduly limit the search. Moreover, good represen-
tations must be compact, consistent, and coherent. Compactness implies
that with relatively few manipulations a large amount of the solution
space can be explored. Consistency requires that simple variants of a
given solution are also admissible (though, perhaps not high-quality)

2Evolutionary explanations for phenomena can be taken too far. There is a Darwinian
alternative to the theory of gravity as an explanation for Newton’s falling apple that floats
around biology conferences: originally, apple trees used to shoot out apples in all possible
directions, some heading for the sky, others running parallel to the earth, and so forth, and
it was only those apples that fell downward that were able to grow and reproduce.
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Selection
Reproduction
with Variation

Recombine
and Mutate:

11001100
00001111
11101111
00001100

Pop at t+1:

11001100
00001111
11101111
00001100

Pop at t:

10101010
11001100
11110000
00001111

Evaluate Fitness:

10101010: f=24
11001100: f=35
11110000: f=22
00001111: f=42

Reproduction by
Performance:

11001100
00001111
11001100
00001111

Figure 10.3. A genetic algorithm. Each solution is represented by a bit string.
Moving clockwise from the top, each potential solution in the population is
tested on the problem and given a fitness value, solutions with greater fitness are
selected for reproduction, and then they are either retained as is or modified by
recombining parts of the selected solutions (crossover) and by making small
changes (mutation). This completes one generation of the algorithm, which is
then iterated based on the newly formed population.

solutions. Finally, coherence requires the solution space to be structured
in such a way that variations of solutions are connected to one another
in a meaningful way. That is, a coherent representation will ensure that
“neighboring” solutions tend to share key structures with one another.

For example, consider the problem of creating a drawing of a person
(see figure 10.4). We can represent potential solutions to this problem
by a sequence of six components (for example, hair, eyes, nose, cheeks,
mouth, and chin), each of which has ten different variations. Although
this representation is relatively compact—being composed of only six
features and a total of sixty separate pieces—it can represent one million
(106) unique faces. It is also consistent in the sense that any set of feature
choices will result in a recognizable face. Finally, there is a coherence to
this representation: if we alter a single choice, say, switch the mouth, we
get a face that looks related to the original.

It is equally helpful to consider a bad representation of the above
problem. Suppose that we take all 106 faces and randomly assign each
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Figure 10.4. Representing a face. Suppose that to draw a face we need to pick a
chin, mouth, nose, ears, eyes, and some hair. If, for any of these elements, there
are ten possible choices, we have only sixty pieces with which to form faces.
Nonetheless, given the combinatorics, we can create 1 million different faces
from these sixty pieces.

of them a number from one to 106. Going from, say, face number
27,182 to face 27,183 is a random move in “face” space, and thus lacks
any coherence. Under this arrangement, neighboring faces look quite
different from one another, and there is little structure for a learning
algorithm to exploit.

Obviously, the efficacy of search is closely tied to the structure of the
search space. As an analogy, consider searching for a hidden number
between 1 and 106. If the space is well ordered—for example, each
search reveals whether the hidden number is above or below the value
searched—then with twenty, carefully selected searches, you can find
the number. If, on the other hand, the space has no order, then on
average it will take around 500,000 searches before the hidden number
is found.

Given a representation, a genetic algorithm begins by randomly
creating a population of possible solutions. The algorithm then proceeds
through a series of generations. During a generation, each possible
solution is given a performance measure on the problem. In the original
work on genetic algorithms, this performance measure came from
evaluating the solution on an exogenous objective function. In many
social systems, however, performance is often endogenous as it depends
on the actions of the other agents in the system. When we have
endogenous performance, we are in a coevolutionary world, as changes
in the behavior of one agent alter the environment and performance of
all of the other agents.

Once each solution has been evaluated, the genetic algorithm
selects solutions for reproduction. The key requirement for a selection
mechanism is that better-performing solutions have a higher chance of
being allowed into the next generation. Many mechanisms meet this
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criterion. For example, under “roulette” selection, solutions are given
lottery tickets based on performance and then randomly selected for
reproduction. Under “tournament” selection, two (or more) solutions are
randomly chosen with replacement, and the best of these are reproduced.
Selection mechanisms only need to be biased toward performance, and
thus there is no guarantee that the best-performing solution will be
reproduced or that the worst one will be eliminated. Of course, we could
implement an algorithm in which the best solution always survives. This
type of requirement may be more likely in social versus natural worlds, as
social agents may be able to emulate the top solutions easily and rapidly,
whereas in biological systems even the best solution can die without
progeny.

Most genetic algorithms reproduce just enough solutions to keep the
population size constant across generations. In any one generation, we
will typically see multiple copies of the better-performing solutions in
the population. Indeed, in a world with exogenous fitness and only
the selection operator, the population will converge on a homogeneous
agglomeration of the best-performing strategy that was present in the
initial population.

Once a new population has been selected, the final step in a genetic
algorithm is to introduce variation, using genetic operators, into some of
the reproduced solutions. Two operators are commonly used: mutation
and crossover. The mutation operator makes small random changes
within a given solution. The crossover operator exchanges larger parts
of two solutions. In the previous example of drawing faces, a mutation
operator might randomly pick one of the six facial features and randomly
replace it with one of its nine variants. Crossover, might swap the hair,
eyes, and nose choices of one solution with their counterparts from
another solution.

Crossover is often characterized as a source of random variation, but
this is not entirely accurate. Although the crossover point (or points in
some implementations) is random, the constituents of the pieces being
crossed are not. Each of these pieces represents partial solutions that
have survived rounds of selection, and as such these partial solutions
represent better than average “guesses.” For example, faces that have
made it through many rounds of selection must have individual parts
and combinations of parts that are better than average solutions to the
problem at hand. Thus, while the switching of pieces is in some sense
random, what is switched is not.

The actual mechanisms underlying genetic operators are an area of
active investigation, and a clear understanding of their workings is slowly
emerging. In general, mutation is viewed as a way to keep adaptive
systems from getting trapped in narrow regions of the search space versus
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being a constructive way to find good solutions to problems. Thus,
although most mutations are likely to be deleterious to performance
(consider trying to improve your car’s performance by randomly hitting
the engine with a few hammer blows), mutation is nonetheless necessary,
as on occasion it results in new opportunities (the hammer blow destroys
the water pump and the air-cooled engine is born). The benefits of
crossover stem from the fact that good partial solutions, known as
building blocks or schema, are present in the population. The current
theory of genetic algorithms suggests that crossover effectively preserves
and combines building blocks, allowing good solutions to be built from
the bottom up.

Once a new population of solutions is formed, the generation is con-
cluded. The system is then iterated and a new generation begins, during
which the cycle of evaluating performance, selection, and modification
continues anew.

As should be apparent from this description, genetic algorithms are
a broad class of algorithms, and many variations are possible. Various
representations, selection mechanisms, and genetic operators are in
common use, and researchers are continually working on new variations
of key parts of the algorithm. Notwithstanding these variants, genetic
algorithms appear to be fairly robust to any particular choice. Indeed,
this robustness suggests that there may be large equivalence classes of
adaptive behavior where the details do not matter.

Most computational models can rely on simple variants of the genetic
algorithm and still meet modeling imperatives. For example, the sim-
plicity of tournament selection and its ordinal use of performance make it
a natural choice for the selection operator. The one choice that appears to
have the biggest impact on model behavior is how the potential solutions
are represented—good representations give the genetic algorithm a better
chance to evolve quality structures. An interesting side effect of coming
up with a good representation is how such structures can form the basis
for thinking about the problem more generally. For example, a good
representation might suggest a new way to apply mathematical tools to
the problem or more general connections to other interesting problem
domains.

10.3 A Taxonomy of 2 × 2 Games

For our first application of evolving automata, we consider strategic
play in simple, repeated games. The formal analysis of strategic play
in games has been around for a long time, dating at least back to
fifteenth-century Japan with the establishment of government-subsidized
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Table 10.1
A Sample Payoff matrix (Prisoner’s Dilemma)

Column Agent

Ac Bc

Row Ar 2,2 4,1
Agent Br 1,4 3,3

Note: Payoffs are ordered row agent, column agent.

Go schools. Game theory began to enter the main stream of many
fields with the development of mathematical techniques prompted by
World War II. Recently, game theory has become a central theoretical
tool in fields ranging from biology to economics.

One important class of games is composed of repeated, two-player,
two-action (repeated 2 × 2) games. This very simple class serves as the
foundation for key parts of both theoretical and applied game theory.
Despite much effort, though, our understanding of strategic behavior in
these games is unfortunately very limited. Theoretically, mathematical
results like the Folk theorem suggest that the behavior of rational agents
is relatively unconstrained. Experimentally, only a few games from this
class, such as the Prisoner’s Dilemma and some coordination games, have
been widely studied. Given both the importance of repeated 2 × 2 games
and the limitations of current theoretical and experimental tools, we
need to find new avenues for exploring this area. Here we advocate the
application of computational models of evolving automata as a valuable
means for conducting such investigations.

In a basic (nonrepeated) 2×2 game, the two players each have a choice
between two possible actions and must choose an action without any
knowledge of what the other agent will pick. Once the agents have made
their choices, each receives a payoff that depends on the joint actions. A
convenient way to summarize this scenario is by arraying the payoffs in a
matrix with the choice of row and column being assigned to the actions
of the “row” and “column” agent. Table 10.1 shows a sample payoff
matrix where, for example, if the row agent chooses action Ar and the
column agent picks Bc, then the agents will find themselves in the upper-
right corner of the matrix. In this corner, the row agent receives a payoff
of 4 and the column agent receives a payoff of 1.

The payoffs shown in Table 10.1 define the well-known Prisoner’s
Dilemma game. In this game, each player always earns a higher payoff
by choosing action A regardless of what the other player chooses. If
both agents make this choice, however, they each receive a payoff of 2
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(upper-left corner). If they had both picked action B, they each would
have earned a payoff of 3 (lower-right corner).

In a repeated 2×2 game the agents play the same 2×2 game over and
over. In each round of play the players simultaneously choose actions.
The actions are then revealed, each agent accumulates the associated
payoffs, and a new round is begun.

Our goal here is to use evolving automata to analyze strategic behavior
in repeated 2 × 2 games. Rather than investigating a specific game, such
as the Prisoner’s Dilemma (see Miller, 1988, 1996 for such an analysis),
we use the power of computational experiments to investigate strategic
behavior across an entire class of games. Since payoffs are associated
with real values, there are an infinite number of 2 × 2 games, and we
must therefore find some reasonable way to pare down these games to
make this investigation feasible.

Rapoport and Guyer (1966) developed a taxonomy of 2 × 2 games by
assuming that agents have only ordinal preferences over outcomes. Under
this constraint there are seventy-eight unique games.3 Twelve of these
games have symmetric payoff matrices. The taxonomy includes analogs
to almost all of the most widely studied games, though it does exclude
a few important ones, such as Matching Pennies. Also, the resulting set
may not be a fair and balanced selection across all games as some game
types are overrepresented in the final taxonomy.

For repeated games, ordinal preferences over one-period outcomes
do not sufficiently specify preferences. Thus, for the analysis here we
transform payoffs into cardinal measures drawn from the set {1, 2, 3, 4}.
By imposing a specific set of cardinal values we may impede our ability
to generalize the results. However, the algorithm we use depends only
on the cross-agent rankings of the final payoffs, so it can withstand
some types of transformations of the payoff matrix. Moreover, our
goal here is to understand general patterns across the class of games,
and many of these patterns are likely to be robust to many cardinality
assumptions.

10.3.1 Methodology

To analyze strategic behavior across the seventy-eight games we use
a computational model of evolving automata based on the method-
ology developed by Miller (1988, 1996). In this methodology, each

3Ordinal preferences imply that there are 24 (4!) possible orderings in the payoff matrix
for each agent. Thus there are 576 (4! × 4!) possible games. These 576 games reduce to 78
once various symmetries are recognized.
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agent’s game strategy is based on a sixteen-state Moore machine (see
section 10.1) where the output of the automaton gives the agent’s desired
action in the round and the input comes from the opponent’s last action.
Agents are matched in round-robin tournaments against every other
agent and accumulate payoffs from all of their games. At the end of the
tournament, the entire population of agents is modified using a genetic
algorithm (see section 10.2).

For each of the seventy-eight games we randomly create two popula-
tions of size 50, one for the row and one for the column players. Every
row player plays every column player once in a fifty-round4 repeated
game. An agent’s final payoff in the tournament is given by the sum of all
of the payoffs it receives during each of its fifty separate matches.

At the end of the tournament, the two populations of row and
column players are separately modified by a genetic algorithm. Agents
are selected for modification based on their total payoffs. Two agents are
randomly chosen (with replacement) and the one with the higher score
is allowed to go into the next generation. This selection procedure is
iterated fifty times, so that a new population of fifty agents is formed.
Each agent in the new population has a 50 percent probability of being
modified. An agent is modified by taking a random state of its machine
and with a 50 percent probability altering the action in this state. The
remainder of the time, one of the state’s two transitions is randomly
selected and redirected to a random state. We do not use any kind
of crossover here, as the space of strategies is sufficiently small that
mutation alone can drive the search. Once each agent has had a chance
of modification, the generation is completed. This procedure is iterated
for 150 generations. For each of the seventy-eight games we conduct fifty
separate experiments, as described previously. In the analysis presented
here, the final data are means over the fifty trials.

The number of states used in a machine has been suggested in the
literature as a measure of strategic complexity. Alas, this measure is
rather indirect for a few reasons. First, isomorphic machines can have
different numbers of states. For example, a sixteen-state automaton with
all states generating a C output is equivalent to a one-state automaton
with a C output (and transitions back to this single state). We can
circumvent this problem by relying on a theorem from the study of
automata that shows how any machine can be represented by an
isomorphic minimal-state machine. A second problem with using states
to proxy for complexity is that the transitions among the states also
matter. For example, a machine that plays C nine times in a row and then

4The size of the Moore machines makes it impossible for agents to recognize the
finiteness of the repeated game.
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plays D thereafter requires ten states (the first nine states output C and
transition to the next one in the sequence regardless of input, and the last
state outputs D and transitions to itself). Similarly, a machine that plays
C ninety-nine times in a row and then D thereafter requires one hundred
states. Even though the number of states between these two strategies
differs by a factor of ten, intuition suggests that their underlying strategic
complexities are quite similar.

While the focus of the analysis is on the general behavior across all of
the games, considering the behavior that arises in a specific game like the
Prisoner’s Dilemma is instructive. Initially, the play of the game reflects
the random nature of the strategies. Relatively quickly, agents learn to
defect in the game and the system is characterized by high levels of
mutual defection. However, cooperative strategies soon begin to emerge
and we see a transformation of the system toward mutual cooperation.
An in-depth analysis of this phenomenon indicates that Tit-For-Tat-like
strategies (see top of figure 10.1) emerge. Such strategies can survive in
a world of defectors, as they quickly fall into mutual defection when
facing such opponents. When they meet another Tit-For-Tat-like strategy,
however, they achieve mutual cooperation and do quite well.

10.3.2 Results

Our analysis using evolving agents suggests that the majority of the
games in the taxonomy have very predictable outcomes. Of the seventy-
eight games, in 59 percent agents concentrated more than 99 percent of
their moves on a single outcome by the end of the evolution. A review
of these games suggests that not only are they “boring” to our agents,
but as it turns out they have not been all that interesting to social
scientists as well—very few research experiments have been conducted
on these games.

As the agents evolve we may see large changes in how they play the
game, what we call outcome dynamics. Large variations in the outcome
dynamics are indicative of games in which adaptive behavior yields
changing strategic regimes over time. Approximately 25 percent (19/78)
of the games displayed above-average variation in outcome dynamics.
The Prisoner’s Dilemma clearly had the highest variation of all of the
games (with a measure almost two standard deviations above the next
highest). The four games with the highest variations consisted of all
the games with a single, iterated dominant strategy equilibrium that
was Pareto dominated by a non-Nash outcome. Besides the Prisoner’s
Dilemma, two other symmetric games had above-average measures of
outcome variation: Chicken, which was fifth, and Battle of the Sexes,
which was sixteenth.
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Our analysis identified three (out of the twelve) symmetric games as
having intriguing outcome dynamics: Prisoner’s Dilemma, Chicken, and
Battle of the Sexes. These are also the three games that have dominated
the experimental and theoretical literature over the past decade or
so. While each of these games is celebrated because of its “natural”
applications, the evolutionary dynamics explored here suggest that they
are also naturally interesting.

In some games, small changes had definite impacts on the evolution of
play. For example, two of the games are symmetric coordination games
with the two coordination points yielding (4,4) and (3,3). In one of these
games, if the row player attempts to play for the (4,4) outcome and the
column player goes for the (3,3) one, the payoffs are (1,2), while in
the other game the corresponding payoffs are (2,1). Thus, in the latter
game it is a little less costly to try for the (4,4) outcome and not
coordinate. This small change results in 99.3 percent of the plays
being concentrated on the (4,4) outcome in the latter game, but only
94.3 percent in the former.

Different patterns of overall strategic complexity (measured by mini-
mized automaton size) were noticeable across the games. Games with the
lowest levels of strategic complexity were those with dominant strategy
equilibria that were not Pareto dominated. Games with the highest
complexity were those without pure strategy equilibria. This latter group
was one of the few times that Rapoport and Guyer’s classification
scheme closely corresponded to a particular adaptive behavior. There was
some positive correlation (ρ = .35) between games with high outcome
variation and those with high strategic complexity.

This analysis indicates that interesting patterns of adaptive strategic
behavior can be identified in the class of repeated 2 × 2 games. We
find that about 25 percent of these games yield game dynamics that
exhibit large changes during the course of adaptation. It appears that
the Prisoner’s Dilemma and its three asymmetric variations have the
most volatile dynamics. The analysis of strategic complexity indicates
that certain types of games may be strategically easier than others to
play. Those games that do exhibit a lot of strategic adaptation during
evolution, however, do not necessarily end up with the most complex
strategies.

Heretofore, the analysis of even simple repeated games has not
resulted in a broad understanding of strategic behavior. Theoretically,
few predictions emerge; experimentally, few games can be studied.
Obviously, new routes of analysis must be explored. One such avenue
relies on the study of artificial adaptive agents. The analysis of such
systems permits us to derive and generalize key patterns of strategic
behavior embodied by simple adaptive learning systems.
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10.4 Games Theory: One Agent, Many Games

In game theory the tendency has been to focus on agents playing
one game at a time. Using evolving automata, we can easily model
“cognitive” behavior across multiple games. Imagine that agents must
play many games, not just one; thus, at one moment they play, say, a
Prisoner’s Dilemma and at the next a game of Matching Pennies. The
important point here is not the precise composition of the games but
rather the requirement that a single agent faces multiple games.

Think of an agent’s Moore machine as a “brain” that must be allocated
across, say, two games. This could be accomplished either by the agent
compartmentalizing different sections of its machine for each game or
by it somehow sharing the same parts across the games. If it must
share the parts, the agent presumably must develop certain subroutines
like “do unto others” that are generically useful across different types
of games. For instance, in a coordination game the “do unto others”
routine might make it possible to alternate between two coordination
points, whereas in a Prisoner’s Dilemma it could induce limited punish-
ment via Tit-For-Tat-like behavior.

Bednar and Page (2006) have constructed a games-theoretic model
of culture based on this idea.5 The model considers six distinct games
(including the Prisoner’s Dilemma and some variations of the Battle of the
Sexes), each of which has a selfish and a cooperative action. Agents play
ensembles of these games formed from subsets of the six possible games.
The strategies of the agents are based on the evolution of automata
framework introduced previously, slightly modified to allow each of the
possible games in the ensemble to evolve its own starting state rather
than always starting the machine in state 1.

We can think of the number of states in the Moore machine as
defining the cognitive capacity of the agents. The number of available
states represents a cognitive budget constraint. Just as people have finite
wallets, they also have finite brains. To the extent that an agent can
share cognitive capacity across multiple games by employing common
subroutines, they can do more with less. This implies a cognitive benefit
to shared behavior.

When individual games are part of larger ensembles, the presence of
the ensemble impacts the strategy for any particular game. For example,
if the other games compel the evolution of an elaborate punishment

5Leady (2006) has considered the problem of when to share subroutines versus when
to decompose. Samuelson (2001) has taken on the problem of how to allocate capacity
assuming decomposition.
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subroutine, then such a routine can be costlessly incorporated into the
strategy for yet another game. On the other hand, developing a costly
routine for a single game may not be feasible if it does not enhance the
agent’s strategic ability in some of the other games.

The general result of this research is that context matters: how agents
play a particular game depends on the collection of the other games in
the ensemble. The ultimate implication of this result is that in worlds in
which agents have limited cognitive capacity and face multiple games,
we should predict very different behavior than that suggested by the
standard game-theoretic models. To put this another way, game theorists
have ignored the distinction between partial and general equilibrium
analysis that is considered so fundamental in the practice of economics.
Agent-based models allow for a natural extension to multiple contexts
that takes into account the full cognitive demands placed on agents.

10.5 Evolving Communication

Communication between agents is observed throughout complex adap-
tive social systems. Communication phenomena occur across a variety
of agent types and scales, including biological agents ranging from
quorum-sensing bacterial cells to “singing” humpback whales, artificial
agents like computer networks, and social institutions like corporations
and legal systems. In all of these systems, communication mediates the
behavior of the interacting agents, allowing a degree of coordination that
can ultimately improve each agent’s performance.

Here we focus on the origins of strategic communication. By investi-
gating the origins of communication, we can begin to understand how
effective communication can arise endogenously. That is, we would like
to investigate worlds in which the meaning of a particular communica-
tion is imposed by the decentralized reactions of the other agents in the
system, rather than being directed by some central enforcement authority
(like a court system or the Académie française). We also want to treat
communication as a strategic phenomena, where agents must consider
both what they will say to others and how they will react to what
others say.

The analysis of endogenous, strategic communication has a variety of
uses. First, it allows us to investigate the emergence of communication
in adaptive social systems. Second, it gives us a good benchmark for the
potential of communication to alter and, perhaps, improve a system’s
behavior. Finally, it may provide a good technique for imbuing artificial
systems, such as computer networks, with the benefits of adaptive
communications.
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The evolving automata framework discussed previously provides a
simple way to model endogenous, strategic communication (Miller
et al., 2002). Suppose that there is a known set of communication tokens,
{C1, C2, . . . , CN}, that can be sent or received by agents. All agents
recognize the separate tokens, but no other formal meaning is placed on
the tokens. If we allow these tokens to be possible inputs and outputs to
an automaton, we can directly apply the evolving automata framework
developed earlier.

Miller et al. (2002) apply this idea to the problem of cheap talk in
games. Suppose that two agents are about to play a single-shot Prisoner’s
Dilemma. Prior to playing the game, the agents are allowed to have
a “conversation” by exchanging communication tokens. During the
conversation, the agents simultaneously send each other symbols until
either they both indicate that they have decided on a move in the final
game or time has run out. If they both indicate that they have chosen
a move, the move is simultaneously revealed and the agents receive the
usual Prisoner’s Dilemma payoffs. If time runs out, agents that have not
chosen a move are penalized.

These conditions form a worse-case scenario for communication. In
a one-shot Prisoner’s Dilemma, defection is a dominant strategy. Under
some conditions, communication could alter the situation sufficiently to
allow both agents to cooperate. For example, if communication implied
binding promises or was difficult to duplicate, then cooperation could
emerge. Unfortunately, in the situation outlined here, none of these
conditions hold, and communication is only “cheap talk” that should be
ignored.6 Thus, our a priori prediction would be that no communication
will emerge in the model and mutual defection will prevail.

To implement the model, we assume a population of agents that are
matched in a round-robin tournament with one another. Each agent’s
strategy is controlled by a Moore machine. The set of actions available to
each agent is given by {C ⊕ C0, D ⊕ C0, C1, . . . , CN}, where Ci is sending
communication token i , and C ⊕C0 (D⊕C0) indicates that the agent has
chosen to cooperate (defect) in the game and sends communication token
C0. When an agent sends C0, all the opponent can infer is that a choice
of either C or D was made. Once an agent enters a state with action
C ⊕ C0 or D ⊕ C0, it remains in that state (and continually sends C0)
until either the opponent also indicates that it has chosen a final move
or time runs out. Each state of the automata must be able to respond
to inputs from {C0, C1, . . . , CN}. As in previous models, we allow the

6Because this is an evolutionary system, it is likely that some agents will face each other
in the future. Nonetheless, given the model’s structure, agents would have a difficult time
maintaining sufficient information to make the system one of repeated play.
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Figure 10.5. Some results from evolving communication. The top panel shows
the percentage of total games in which both players cooperated during the
experiment (generations are on the x-axis). As seen in the graph, the system
experiences occasional outbreaks of mutual cooperation. The bottom panel
tracks the average amount of communication tokens exchanged by the players
during each generation. Note that communication tends to increase just prior to
the cooperative outbreaks and persists for many generations thereafter.

agents to accumulate payoffs from all of their games and then modify
the strategies using a genetic algorithm.

10.5.1 Results

The model generates some surprising results (see figure 10.5). Rather
than seeing a world filled with mutual defection, we observe occasional
outbreaks of cooperation. Observations of the average chat length, that
is, the number of communication tokens exchanged before both agents
choose final moves, indicate that just prior to the start of a cooperative
epoch there is a burst of communication that persists long after the epoch
has ended (and only slowly decays back to the low base level).

We can conduct a variety of experiments designed to illuminate the
driving mechanism behind the system. These experiments indicate that
the system most often finds itself in a situation in which each agent’s
initial action is D ⊕ C0. That is, agents immediately decide to defect and
send the signal that they have chosen a final move. If all agents pursue
this strategy, we observe a world characterized by no communication and
mutual defection.

Every so often, a mutation occurs in which an agent will begin by
sending a communication token from {C1, . . . , CN} and, if its opponent
also sends a communication token from this set, the agent will cooperate;



December 11, 2006 Time: 02:59pm chapter10.tex

Evolving Automata • 195

No Talk
Defect

Emergence
of Mimics

Talk and
Defect

Talk and
Cooperate

Figure 10.6. Cyclic cooperation under communication. The evolving
communication system tends to cycle through four stages. Initially, the world is
filled with defectors who do not communicate. Some agents then learn how to
communicate and reciprocate communication with cooperation. This leads to
the emergence of mimics who destroy the cooperation, leaving the system with a
lot of communication and little cooperation. From this state, communication
declines and the system relaxes back into the initial state of defection with little
communication.

otherwise, it defects. Such agents can survive in a world surrounded by
agents doing D ⊕ C0, because against these opponents the game ends
with mutual defection. If they happen to meet an agent like themselves,
however, they cooperate and receive a greater payoff. If two of these
communicating agents arise, the conditions are ripe for a rapid spread of
cooperation, and we observe a system with lots of communication and
mutual cooperation.

Unfortunately, the success of the “communicate and cooperate” agents
leads to their own destruction. Evolution creates mimics who send the
identical communication stream as cooperative agents, but who then
defect. This leads the system into a state where there is a lot of com-
munication, but little cooperation. Eventually, the system relaxes back
to the conditions that we described initially, where agents immediately
defect without talking. Figure 10.6 illustrates the cycle underlying the
system.

Normally, mimicry might be prevented by having an elaborate com-
munication handshake that would be hard to duplicate. Unfortunately,
evolutionary systems naturally surmount this obstacle. Suppose we have
some agents that develop a very complex handshake before cooperating.
The success of these agents will imply that they are often selected for
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Figure 10.7. Predicted cooperative epochs per 1,000 generations. States gives
the maximum number of states each automaton is allowed, and tokens is equal
to the number of unique communication tokens (not counting C0) available to
the agents.

reproduction. When they are reproduced, their children will be given
the full handshake, and it will only take a single mutation (a change of
the final move from cooperation to defection) to create a perfect mimic.
This mimic will thrive, because it receives a very high payoff as it defects
against its cooperative siblings.

Two parameters of interest in models of strategic communication are
the number of tokens available for communication and the amount of
processing power in the automata. Based on the experiments described
here, we can estimate the impact of these two parameters on the average
number of cooperative epochs that arise in the model. Figure 10.7
gives these estimates. Note that as the automata become more powerful
(the number of states rises), we tend to see more cooperation. Also,
cooperation increases as more communication tokens become available
to the agents.

Increases in the size of the automata and number of available com-
munication tokens allow more cooperation to emerge in the system for
a variety of reasons. A microlevel analysis of the system suggests that
complicated ecologies of strategies develop in the system (see figure 10.8).
There is a constant dance among defectors, cooperators, and mimics, and
this interplay becomes more elaborate as the processing ability of the
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Figure 10.8. A strategic ecology. In Generation 840 an automaton emerges
that communicates by sending C1 and cooperates with any other agents that
communicate (the numbers below each automaton give the size of the respective
population). This allows it to cooperate with itself while avoiding falling prey to
the predominant population of noncommunicating defectors. In Generation 844
a new strategy arises that communicates by sending C2 and only cooperates with
other agents sending C2, thus it cooperates with itself while defecting on the
previous cooperative strategy (which fails to discriminate among initial signals).
By Generation 849 a mimic arises and destroys the value of communication as a
cooperative signal. The evolution of strategies in the model allows a complex
ecosystem of behavior to emerge. More details can be found in Miller et al.
(2002).

automata and the number of communication tokens increase. Under such
conditions, agents are able to develop more elaborate handshakes that,
while still vulnerable to mimicry, tend to support alternative handshake
pathways that can take over once a particular path has been compro-
mised. More elaborate strategies are also able to find and exploit vulner-
abilities in the mimics, which also results in longer cooperative epochs.

10.5.2 Furthering Communication

This discussion outlines the impact of communication in the Prisoner’s
Dilemma. Recent work (Miller and Moser, 2004) used the identical
framework but focused on a game of coordination (the Stag Hunt game).
Again, the presence of communication fundamentally alters the usual
theoretical predictions. In this case, agents are able to coordinate on
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the superior (yet, previously assumed, impossible to attain) equilibrium
point. As before, better communication in terms of processing ability or
number of tokens improves the outcome.

In general, communication is capable of productively altering the
interactions in a social system for a few key reasons. First, communi-
cation expands the behavioral repertoire of the agents, allowing new and
potentially productive forms of interaction to prevail. With communica-
tion, agents can create new actions that allow them to escape the previous
behavioral bounds. The greater the potential of communication, proxied
in our discussion by processing ability and tokens, the more possibilities
that emerge. Second, communication emerges as a mechanism that allows
an agent to differentiate “self” from “other.” In the worlds we have
explored, agents would like to cooperate in the case of the Prisoner’s
Dilemma and hunt stag in the case of the Stag Hunt, but the presence (and
inherent incentives) of defectors is an ever present danger to adopting
such behavior. Communication emerges as a way either to signal a
willingness to be nice or to detect meanness. In these systems, this occurs
when a fortuitous mutation gives an agent the ability to “speak” and
to respond positively to such communication while avoiding harm from
those agents that say nothing. By detecting “self” in such a way, the agent
can improve its performance even in nasty worlds.

While we see the emergence of communication in this model, note that
the agents are preequipped with the ability to send, receive, and process
tokens. Thus we might want to investigate the question of how even
this more primitive ability to communicate could arise. One hypothesis
is that actions, such as the raising of an open hand to signal that “I hold
no weapons and do not wish to fight,” become “tokenized” over time
into pure communication signals, in this case, a gesture indicating hello
or “I give up.” It might be possible to create a model in which actions
with immediate consequences have the potential to devolve into more
abstract signals. Another interesting expansion would be to see if gram-
mars can evolve. Grammars use processing to give more meaning to the
set of available tokens, and thus we might expect to see the develop-
ment of grammars in cases where the raw communication needs outstrip
the available tokens.

10.6 The Full Monty

We now have tools that permit us to explore systems of interacting,
adaptive agents. Within genetic algorithms, we find that details of
parameter values or design choices often do not seem to matter in
terms of the behavior of the algorithm. Moreover, other adaptive
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algorithms, like replicator dynamics and neural networks, seem to yield
similar results on similar problems. All of this hints at the potential
of large equivalence classes interconnecting the space of adaptive-agent
models and, ultimately, the potential for a comprehensive and cohesive
understanding of how adaptation may drive complex systems.

Agent-based models using artificial adaptive agents offer endless possi-
bilities. At the extreme, we might be able to produce a model of adapting,
communicating, multiple-game playing artificial agents that are situated
in a world that approximates all of the important social, geographic,
and economic systems that we wish to know about. While such a model
would be interesting to derive and analyze, by definition it would be big
and messy. Indeed, substituting a real world that is tough to understand
for an equally confounding artificial one may not be all that helpful. You
could argue, though, that the aforementioned artificial world is more
easily observed and manipulated than the real one and, as such, might
provide a better substrate from which to investigate the world.

The driving ambitions of models that explore game ensembles and
communication is the potential to yield insights into phenomena like
the evolution of trust and cooperation and perhaps even the emergence
of more complex economic and political institutions. Yet, at present we
need to keep such ambitions in check so that our reach does not exceed
our grasp. These tools make it all too easy to create complicated worlds,
but such worlds are typically hard to understand. Fortunately, even in
their simplest forms, models of evolving automata offer many opportun-
ities to learn about our world.
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Some Fundamentals of Organizational
Decision Making

A life spent making mistakes is not only more honorable, but
more useful than a life spent doing nothing.

—George Bernard Shaw

Organizations composed of collections of agents influence the
behavior of systems ranging from biochemical and neurological path-
ways to political parties and firms. Like all decision-making entities, these
organizations must formulate productive actions based on information
from their environment. Here, we investigate some fundamental princi-
ples underlying this process. We develop these principles by analyzing
a model of decentralized decision making that allows us to explore a
well-defined class of organizational structures immersed in an ensemble
of potential problems. Our goal is to understand better some of the
key “natural” constraints governing all organizational systems. The
questions we confront include: What are the limits on organizational
decision making? Is there a best organizational structure? How do
problems influence the types of organizations we observe?

Presumably, we see organizations in the world because of a need to
transcend the limits of individual agents. For an organization to be viable,
each member must be receiving at least as much benefit from membership
as she would from acting alone. Thus, in terms of benefits, organizations
must be synergistic in the sense that the whole does at least as well as the
sum of its parts. This does not mean, however, that organizations must
be synergistic in terms of productivity; the minimal requirement here is
that the sum must be at least as great as a part. For example, in tug-of-
war all of the benefit is in winning, and thus adding a person to a team
can be beneficial even if the effective pull of the team doesn’t increase by
the full amount of that individual pulling on her own.

Organizations are able to circumvent a variety of agent limitations.
Some organizations are useful because they can aggregate existing
characteristics of agents, such as when tug-of-war teams combine each
member’s strength or schools of fish confuse predators by forming a much
larger and more dynamically shaped “individual.” At other times, the
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value of an organization comes through internalizing external benefits,
such as flocks of geese (or schools of fish for that matter) having an
easier time moving by using the vortices created by other members of
the group. Organizations can also allow agents to exploit specialization
and circumvent other innate limitations, such as the ability to acquire
or access incoming information, or individual bounds on processing the
information once it is acquired.

Our focus in this chapter is on how well a given organization can
use information from the environment to make “good” decisions. We
assume that organizations form to enhance the limited information-
processing ability of each individual agent. Our agents will be capable of
processing a restricted set of information and then passing on their results
to other agents. Eventually, we will require the processing to converge on
a single, binary decision. The model is intentionally stark—relying on
a very simple notion of information, agent behavior, and organization.
Nonetheless, it illustrates a number of more general points.

11.1 Organizations and Boolean Functions

We model organizational decision making by assuming that a group of
agents must transform a set of binary information into a binary decision.
For concreteness, consider the incoming information as being arrayed
on a binary string of fixed length. Organizations must transform this
information into a single, deterministic binary choice. For example, if
the input consists of two bits of information, the first bit could represent,
say, whether the price of a stock was falling (0) or rising (1) and the
second bit might indicate whether trade volume was low (0) or high (1).
There are four possible two-bit input strings (00, 01, 10, and 11), and
a decision rule must associate each of these strings with either a 0 or 1
(which may indicate, for example, whether to sell or buy the stock).

This framework allows us to capture the decision process in a binary
rule table that links any potential input string to the appropriate decision.
One such rule table is shown in table 11.1, where unless the input string
has only ones (say, a rising price and high volume), then the decision is
0 rather than 1 (say, sell rather than buy). Such association tables define
Boolean functions.

Thus, each Boolean function defines a “problem” (that is, a mapping
from possible inputs from the world to a binary choice) that could
be solved by an organization. Therefore the entire problem space
confronting these organizations is given by the set of all unique Boolean
functions. Here we consider problems that have four-bit inputs. In this
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Table 11.1
A Sample Rule Table (Boolean Function)

Input String Choice

00 0
01 0
10 0
11 1

case, there are 16 (24) possible input strings, and thus there are 65,536
(216) unique Boolean functions.

By having such a well-defined ensemble of problems, we can ask
questions about the generic properties of organizations as problem
solvers. An individual organization’s success on a particular problem
is given by the number of all possible input and choice combinations
that it matches in the associated rule table.1 In the four-input case,
an organization that perfectly solves a problem must match all sixteen
entries in the rule table.

To summarize, in the world just described, an organization is any entity
that induces a Boolean function (that is, provides a deterministic binary
choice when it is presented with a feasible input string). In this chapter
we will implement a specific class of such organizations, but many of the
arguments we put forth are not tied to this particular form.

Here we consider organizations composed of a set of connected nodes.
Each node receives some limited input, either from a string coming in
from the environment or from another node. Each node processes this
input using a deterministic formula (that may differ across nodes) and
emits a single output bit that either flows up to other nodes (as an input
for additional processing) or, if it is the topmost node, represents the final
choice of the organization.2

For example, consider an organization that is composed of three
nodes, each of which takes in two binary inputs and emits a single
binary output—we label such organizations as 3n2bH (3-node, 2-bit,
hierarchy). We structure the organization such that the two lower nodes
each take in two bits of input from the incoming information string

1Here we assume that the input combinations arise with equal probability and value. We
could adjust performance measures to reflect any biases in either occurrence or value.

2The problem outlined here is related to that of integrated circuit design, in which a few
simple components must be combined so as to implement key computational functions.
The focus of most such work is on implementing designs that give exact solutions to a
limited set of functions—here, we are willing to consider inexact solutions to a larger set of
problems.
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Figure 11.1. A simple organization.

(see figure 11.1). After these two nodes act on their inputs, the single up-
per node takes the two single-bit outputs from the lower nodes, processes
it, and emits the organization’s final decision. These 3n2bH represent one
of the simplest designs capturing the notion of a hierarchically arranged,
decentralized organization.

Because each node must deterministically emit a single bit based
on two bits of input, the node must embody a two-input Boolean
function. Given the four possible combinations of inputs, there are 16
(24) possible Boolean functions that could be used for any given node.
With three nodes being needed to form an organization, there are 4,096
(163) possible organizations of this type (assuming that the lower input
connections are fixed).3

11.2 Some Results

As discussed, we view organizations as decentralized collections of
processing nodes designed to solve Boolean functions. Like all models,
the hope is that this simplification of organizational life will lead to
some fundamental insights that transcend the constraints of the model.
Our analysis uses computational experiments to provide insight and
clarification, linked with more formal mathematical derivations where
possible.

The first observation, though simple, has important implications. In
our model, organizations always produce an output for any feasible
input string. This output is deterministic since, whenever an organiza-
tion is presented with the identical input string, it always produces
the identical choice. Thus, each organization, regardless of its internal

3As will become apparent in the results, there are numerous symmetries embodied in
these organizations.
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design, will always implement a single, fixed rule table. This results in the
following:

Claim 11.2.1 Any deterministic organization will perfectly solve a single
problem; that is, it will map every feasible input string to the appropriate
output defined by some fixed Boolean function.

Claim 11.2.1 implies that any given organization will be perfect at
solving one particular problem. Later, we use this observation to develop
some insights about the relative abilities of large classes of organizations.
Note that the claim does not say that any given problem can be solved
by a given organizational form, only that a given organization can solve
only one problem. It may be the case that more than one organization
solves the same problem.

Given a particular organizational form, such as the class of 3n2bH
organizations, we are interested in the ability of the members of that
class to span the potential set of problems. For example, how many of
the 65,536 (216) possible four-bit input Boolean functions (problems) can
be solved by at least one of the possible 3n2bH organizations.

We might find that certain organizational forms are inherently limited
by their structure in terms of what problems they can solve. Before we
investigate the behavior of the 3n2bH organizations, we first wish to
explore whether there is something inherently limiting about using sets
of two-bit input nodes connected in a hierarchy. Here, we note that such
hierarchies, as long as we are not restricted to only three nodes and
can have multiple connections to the input string, can solve any possible
Boolean function:

Claim 11.2.2 A hierarchical collection of two-input nodes of sufficient
size and redundant input connections is able to solve perfectly any
possible Boolean function.

To understand this claim, consider the problem of recognizing a single
input pattern. To do this, we could have each of the lowest nodes hooked
to the inputs send a 1 if its associated two bits of input match the
pattern and a 0 otherwise. If all the nodes above the first level perform
an AND operation, then the top node in the organization would emit
a 1 if the particular pattern was found and a 0 if it was absent. Once
we can identify a particular pattern, we can implement any possible rule
table by combining these pattern-recognizing hierarchies into a bigger
organization. To do so, first create a separate hierarchy for each pattern
that results in, say, a 1 in the rule table. Next, combine the output of each
of these pattern-recognizing hierarchies with a hierarchy of OR nodes,
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so that the top node of this super organization now emits the appropriate
answer to the Boolean function. Thus, given sufficient nodes and careful
construction, we can always create a hierarchical organization composed
of these types of limited ability agents that can solve any potential
problem.

The proof of claim 11.2.2 suggests that we can put an upper bound on
the minimal number of nodes needed to implement any Boolean function
of a given size by calculating the minimum number of nodes needed to
implement this scheme. In the case of four-bit inputs, a hierarchy of three
nodes is sufficient to recognize any specific four-bit pattern. For a given
rule table, we need to identify only the patterns associated with either
all of the 0s or all of the 1s in the table. To conserve on nodes, pick
the smaller of these two sets, which must be of a size less than or equal
to eight (half of the sixteen possible patterns in the table), so we will
need at most twenty-four (8 × 3) nodes to recognize the key patterns.
The eight outputs from this part of the organization can be combined
using seven additional “OR” nodes to give the final answer, implying
that we need at most thirty-one nodes to implement any possible four-bit
rule table.

We now turn to analyzing the properties of our 3n2bH organizational
form. Intuitively, it might seem that the straightforward structure of
these organizations and the simple problem domain (four-bit inputs)
that they confront should make such organizations strong candidates for
solving any potential problem in the domain; however, this is not the
case. Recall that there are 65,536 (216) possible four-bit input Boolean
functions (problems). Because there are only 4,096 (163) possible 3n2bH
organizations (and from claim 11.2.1 we know that each of these can
solve only one problem), then at most only 6.25 percent of all possible
four-bit problems can be solved by these types of organizations.4

The 6.25-percent figure assumes that each organization solves a
unique problem, but since more than one organization can solve the
same problem, it represents an upper bound on the performance of

4One caveat on the previous result is that we do not allow the lowest-level input
connections to relocate on the input string. Such simple reorganization might allow an
organization to solve previously unsolvable rule tables. For example, a rule table that
maps 1000 and 0010 into 1 and everything else into 0 cannot be solved by our 3n2bH
organizations. However, rearranging the second and third connections from the lower-level
nodes results in a rule table that maps 1000 and 0100 into 1, a problem that can be solved.
The general issues that arise in this discussion are interesting for organizational theory. For
example, Simon’s (1969) ideas of decomposability could be applied as some rearrangements
of the input nodes transform the problem into something that is easily decomposable. One
could also apply ideas on how combinations of “views” of the problem (each node’s input
connections) and problem-solving heuristics (the actual function each node uses) alter an
organization’s problem-solving ability.
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Table 11.2
Problem Solving for 3n2bH Organizations

Number of
Number of Organizations Total
Problems Solving Each Organizations

65,016 0 0
490 4 1,960

28 44 1,232
2 452 904

3n2bH organizations. Computationally, we can take each of the 65,536
possible problems and determine the number of organizations that can
solve each one. Table 11.2 summarizes these results. Note that 65,016
problems cannot be solved by any of the possible organizations—that is,
only 0.79 percent of all possible problems can be solved by this class of
organizations. Of the 520 problems that can be solved, the vast majority
of them (490 or 94 percent) are each solved by four organizations.5 Two
problems, those with rule tables of either all zeros or all ones, are solved
by 452 organizations each. Much of the redundancy of these latter two
problems arises because there exists a variety of ways to configure some
key nodes and force the appropriate solution on the organization.

As the input stream gets larger, we find that the potential problem
space covered by two-bit, nonoverlapping, hierarchical organizations
rapidly goes to 0. An organization with x levels in the hierarchy requires
x(x + 1)/2 nodes and can take in inputs with 2x bits. We therefore have
16x(x+1)/2 possible organizations that must embrace 222x

problems. Even
for small values of x, the ratio of possible organizations to problems
quickly goes to zero.

11.3 Do Organizations Just Find Solvable Problems?

The preceding analysis suggests that classes of organizations may be
severely constrained in their ability to solve all possible problems. While
at some level this observation seems sensible, it does potentially challenge
the more commonly held belief that organizations arise to solve whatever
problems they may confront. Perhaps organizations are much more

5Since two bits are passed up from the lower nodes to be processed by the upper one,
we can always put in an alternative function in either (or both) of the lower nodes that
results in the opposite output (that is, sends up a 1 instead of a 0 and vice versa) and then
compensate for this change by altering the upper node’s function. Thus, for any solvable
problem, there are at least four possible organizations that can solve it.
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constrained than we have previously imagined, and rather than having
the ability to solve any possible problem that comes their way, they
instead can only exist in worlds that embody the right kind of solvable
problems.

Even a generic organization, with some simple modifications in the
spirit of the constructions outlined in claim 11.2.2, might be able to solve
a larger set of problems. However, even if organizations are adept enough
to implement such changes, it is likely that such modifications are rather
costly and brittle once an organization adds more than a few defaults to
its generic design.

Alternatively, it might be the case that even though the problem space
is vast, by chance the actual set of productive problems confronting
organizations happens to fall within the small subset of problems that
are solvable by generic organizations. Of course, the probability that time
after time, the problems that need to be solved by different organizations
happen to be “easy” would appear to be vanishingly small, and it would
be hard to support this chance-based hypothesis.

A better resolution of these issues is to admit the possibility that the
organizations that we observe in the world are more driven by the set
of solvable problems than is usually assumed. That is, organizations
can arise only in those very narrow niches that contain easily solved
problems. This Goldilocks view of the world implies that organizations
emerge only when the conditions are just right, and suggests that focusing
on the narrow spectrum of solvable problems may provide a good
purchase upon which to build our understanding of organizations.

In table 11.3 we provide the distribution of four-bit problems that can
be solved by at least one member of the class of 3n2bH organizations.
Note that 3n2bH organizations are most successful on the extremes
of the functions, that is, on those parts of the problem space where
there are very few (or very many) inputs that require the same choice.
Such a relationship is suggested by the proof of claim 11.2.2, as the
more lopsided the function, the fewer the patterns that need to be
recognized, leading to an easier calculation. Since the majority of the
Boolean functions exists in the range with an intermediate mix of output
values, most will not be solvable by our organizations.

11.3.1 Imperfection

The previous discussion focused on the conditions necessary for an
organization to perfectly embody a given rule table. Of course, in
many systems having answers that are close is often good enough, so
investigating less than perfect performance is of interest. As we saw,
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Table 11.3
Problem Distribution for 3n2bH Organizations

Number of 1s Number of Such Number Percent
in the Function Boolean Functions Solvable Solvable

0 1 1 100.00
1 16 16 100.00
2 120 48 40.00
3 560 32 5.71
4 1820 44 2.42
5 4368 0 0.00
6 8008 64 0.80
7 11440 16 0.14
8 12870 78 0.61
9 11440 16 0.14

10 8008 64 0.80
11 4368 0 0.00
12 1820 44 2.42
13 560 32 5.71
14 120 48 40.00
15 16 16 100.00
16 1 1 100.00

one case where less than optimal performance is interesting is when
a problem cannot be perfectly solved by any organization in a given
class. We could also consider the case where an organization must
confront an ensemble of problems, and since an organization can only
perfectly implement a single such problem, we need an expanded notion
of performance across the ensemble. We can measure the performance
of any given organization by the number of inputs it gets correct in
the function—what we will call accuracy. Intuitively, it might seem that
certain organizational forms are superior to others a priori. However, we
note the following:

Claim 11.3.1 Without reference to a particular problem, all deterministic
organizations are equally accurate on Boolean problems.

The proof of this proposition is straightforward. Consider the class of
n-bit Boolean functions. There are 2n entries in the input domain. Since
any organization operating on this domain is able to implement perfectly
a single, Boolean function (claim 11.2.1), there are exactly

(2n

b

)
other rule

tables that differ by b bits from the one generated by the organization.
Thus, this organization will be b bits off on

(2n

b

)
other problems. This

argument does not depend on the specific Boolean function implemented
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Table 11.4
Problem Accuracy on Four-Bit Inputs, Where Accuracy Is the Number of
Rule-Table Inputs (Out of Sixteen Possible) That It Gets Correct.

Accuracy Number of Problems

0 1
1 16
2 120
3 560
4 1820
5 4368
6 8008
7 11440
8 12870
9 11440

10 8008
11 4368
12 1820
13 560
14 120
15 16
16 1

by the organization, so any organization will have an identical accuracy
distribution. Of course, the claim does not state that organizations must
have the same accuracy on the same problems—each organization may
miss different problems—but only that the distribution is identical. For
example, in a world with four-bit inputs, any deterministic organization
embodies the accuracies shown in table 11.4.

Claim 11.3.1 suggests that there is no best organizational design
without knowing about the problems that will be confronted. In essence,
any organization is equally good at solving problems, broadly defined.6

While the notion that particular problems require particular solutions is
not too surprising, the observation that there is a much deeper level of
equality across all organizations is less obvious.

While all organizations are equally imperfect across all problems, good
organizations are those that produce the proper answers to the problems
that the organization actually confronts. If we know in advance which
problems need to be solved in the world, we could rank organizational
forms by their ability to provide accurate answers to the particular
ensemble of problems in play. There may be an interesting interplay

6This is a similar conclusion to the No Free Lunch result of Wolpert and Macready
(1997).
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between “generalist” organizations that solve a set of problems relatively
well and “specialist” ones that have higher accuracy on a narrower set
of problems in such a world.

11.4 Future Directions

The view of the world embodied in the preceding model and analysis
is a simple one with many avenues remaining for investigation. It
begins with the premise that organizations must make decisions based
on information they receive from the environment. By introducing the
notion that problems are in the form of Boolean functions, we can exploit
the resulting structure both computationally and mathematically.

Any deterministic organization, regardless of its internal structure, will
be able to perfectly implement a single Boolean function, that is, be
able to solve a single problem. Of course, nothing prevents more than
one organization from solving a given problem, and large overlaps may
be the norm. The idea of “one organization, one function” has some
powerful implications; for example, it allows us to quickly determine the
potential coverage of a given class of organizations across the problem
space. Indeed, for certain classes of organizations, it is likely to be the
case that the problem space quickly overwhelms the solution ability of
the underlying organizations. That is, organizations may be productive
on only a small set of all possible problems. This may imply that
organizations may be more reactive than proactive, working well only
when the problems are easily solvable rather than solving whatever
problems come their way.

The fact that each organization implements a single Boolean function
also implies that there is a deep parity among all organizations in terms
of problem-solving ability. This parity suggests that all organizations
exhibit identical generic performance characteristics. Thus, in this sense
the most elaborate organizational form imaginable is no better than an
organization that always makes the same choice, regardless of input.

The simple model developed here begins to highlight some of the
fundamental constraints on organizational behavior and should serve as
a productive basis for further investigations. The results, while perhaps
obvious a posteriori, challenge existing wisdom and give a new emphasis
on aspects of the problem that were previously relegated to minor roles. It
is likely that further analysis of these simple systems will yield important
insights about organization in both natural and artificial systems.
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Social Science in Between

The machine does not isolate man from the great problems of
nature but plunges him more deeply into them.

—Antoine de Saint-Exupery, Wind, Sand, and Stars

If you want to build a ship don’t herd people together to
collect wood and don’t assign them tasks and work, but
rather teach them to long for the endless immensity of the sea.

—Antoine de Saint-Exupery, Wisdom of the Sands

Our inventions are wont to be pretty toys, which distract
our attention from serious things. They are but improved
means to an unimproved end.

—Henry David Thoreau, Walden

Here we discuss the impact of complex adaptive systems on the social
sciences. Our book’s central theme, “The Interest in Between,” provides
a framing for this discussion. The complex adaptive social systems view
of the world allows us to explore the spaces between simple and strategic
behavior, between pairs and infinities of agents, between equilibrium and
chaos, between richness and rigor, and between anarchy and control.
These spaces lie between what we currently know and what we need to
know. They are not subtle refinements on the landscape of knowledge
but represent substantial deviations from what we typically assume. The
story is told of a geologist who walks to the rim of the Grand Canyon
and remarks “something happened here.” Social scientists seem to be
haunted by their own canyons, and it is time that we actively engage
these mysteries and begin to explore them.

The social sciences have pursued a variety of methodologies. Tech-
niques like empirical research, natural and laboratory experiments,
historical investigations, qualitative methods, mathematical and game
theory, and computational models have all been used. In some cases,
these methods have been deployed and refined by thousands of scientists
over many, many decades. In other cases (like computational models),
they have been used by just a handful of scientists only recently. Each
approach can be both a complement and substitute for the others.
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Thus, careful empirical work can both substitute for, and complement,
laboratory experiments; computational models can enhance, or replace,
mathematical ones; and so on.

In the absence of any one method or idea, science would continue
to advance, albeit perhaps at a slower pace or in a different direction.
Nonetheless, sometimes the changes in the pace and direction brought by
a new methodology or set of ideas can be significant. In this chapter, we
outline some initial contributions we attribute to the complex adaptive
social systems view of the world. We also highlight some of the new
frontiers that can now be explored—the interest in between the usual
boundaries.

12.1 Some Contributions

It is still too early in the development of complex adaptive social systems
ideas to fully assess their contributions. We know that some of the results
that have been found can be replicated using more traditional techniques,
though it is often the insights and discoveries made with the new methods
that allow the old ones to be applied. Ultimately, the complex adaptive
systems approach has focused our attention on new possibilities. Even
though the applications of these ideas are still in their infancy, they
have already begun to contribute to our understanding of key social
processes.

A key contribution of complex systems has been a better appreciation
of the power and mechanism of emergence. Models of self-organized
criticality show how systems can locally adapt to a critical region in
which the global properties of the system take on regular behavior, such
as a power-law distribution of event sizes. Such ideas are likely to serve
as fodder for explaining various social scaling laws, like the distribution
of incomes or firm sizes (Axtell, 2001).

Perhaps many features of social systems are the result of self-
organization. Computational models of market behavior have high-
lighted key features that allow the emergence of predictable prices and
trading patterns in markets (Rust, Miller, and Palmer, 1992, 1994;
Gode and Sunder, 1993). In particular, this work has shown that a
sufficient requirement to see such behavior emerge is the presence of
simple institutional rules that force new offers to better existing ones.
Such an insight radically altered the existing view—one that relied on the
innate cleverness of self-interested traders—of the driving force behind
Smith’s invisible hand (see figure 12.1). The emergence of organization
via decentralized means is apparent in the example of voting with your
feet explored in chapter 2.
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Figure 12.1. Simple trading strategies dominated the Double Auction
Tournament (see Rust, Miller, and Palmer, 1994). Notwithstanding the presence
of some very complicated strategies based on various economic and statistical
theories of trading, it was the simple strategies that won the tournament.
Depicted is a schematic of Kaplan’s winning strategy. It allowed other traders to
submit bids and asks, and took advantage of any profitable opportunities when
the spread between the bids and asks was small. This strategy was an
“information parasite” that fed off of the actions of the other agents in the
ecosystem.

Models of emergence also provide insights into the robustness of the
underlying system, as the essence of emergence requires entities to be
able to maintain their core functionality despite what are often radical
changes from both within and without. Using emergence ideas, we can
begin to understand the robustness of systems such as markets, cultures,
and organizations like firms and political parties.



December 11, 2006 Time: 02:31pm chapter12.tex

216 • Chapter 12

Smooth Rugged

Figure 12.2. Two landscapes generated by nonlinear interactions. As nonlinear
interactions increase in a system, the numbers of peaks and valleys increase as
well and the landscape becomes more rugged. Agents with limited search
abilities can get trapped easily on local optima when the underlying landscape is
rugged. Landscape models have been used in the social sciences to study topics
ranging from politics to technological innovation.

Another contribution of complex adaptive social systems has been
a recognition of the importance of nonlinearities and interactions. To
take one example, consider agents that must blindly search across
the world to achieve some goal. To keep such models mathematically
tractable, we often need to assume that agents are completely blind (and
hence just randomly search), are completely omniscient (making search
trivial), or exist in a smooth and single-peaked world (where groping
results in optimality). All of these assumptions are both unsatisfying and
unrealistic. The complexity approach considers landscapes in which the
various elements of the space interact in nonlinear ways, resulting in a
convoluted world with many peaks and valleys (see figure 12.2). Once
agents are placed in such a world, a whole new realm of behavior opens
up. Agents find themselves in a path-dependent world, in which early
choices determine future possibilities (Page, 2006). Tipping points and
critical junctures emerge, where a given system can rapidly change its
characteristic behavior.

The notion of search across a rugged landscape provides a new
purchase from which to consider ideas like innovation and political
platform formation. For example, we can model firms competing against
one another to develop good technologies, where a given technology is
described by, say, a binary string in which each bit encapsulates some
technological feature that interacts with the other bits (the wing shape of
an airplane interacts with its power plant choice, which interacts with
its fuselage materials, and so on). Now the process of technological
invention becomes a search problem across a rugged landscape, where
past triumphs and new discoveries form the basis of new technologies
that are brought to the market.
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The new network theory has also been a major advance facilitated
by the complex systems approach (Newman, 2003). While networks—
and, more important, the interactions among agents they facilitate—have
long been considered by social scientists, especially sociologists, a wave
of recent interest has been prompted by computational and mathematical
models created by complex system researchers. Rather than focusing on
any particular network, this new work considers the generic properties
of social connections. Computational modeling allows researchers to
create massive numbers of networks that share particular connectivity
patterns, and from these derive generic patterns of behavior. These same
researchers have begun to mine new sources of on-line data, providing
new examples of networks that heretofore would have been impossible
to collect and analyze.

Complex systems ideas have also led to new advances in the modeling
of adaptation. Adaptive agents can often radically alter the behavior of
our models. For example, consider the formation of political platforms
by competing parties. If the parties are able to optimize with perfect
knowledge, then we predict that incumbents always lose elections and
the party platforms we observe will forever follow a chaotic path. Under
adaptive agents (see figure 12.3), the platform dynamics behave in a way
that is much more consistent with the real world—they slowly converge
to good social outcomes that can be tied to the underlying preferences
of the voters (Kollman, Miller, and Page, 1992). Moreover, incumbency
advantages spontaneously arise due to the inherent search problems faced
by adaptive parties. In such models, the search landscape of each party
is coupled to those of the other parties, and the landscapes dance around
with one another as one party alters its platform in response to platform
changes made by the other parties.

Computational models have opened up vast new frontiers for ex-
ploring the learning behavior of agents. To take one example, consider
learning in games. The last half of the twentieth century witnessed a
tremendous intellectual effort aimed at refining various game solution
concepts. Toward the end of this period, good experimental data on
how agents actually played games began to emerge, and it was found
that many of the formal solution concepts failed to predict what was
happening in the experiments. Over the past decade or so, computational
learning models have arisen to explain the divergence. For example,
Andreoni and Miller (1995) showed how a simple model of learning
based on a genetic algorithm can be used to reconcile differences
between the theoretical and experimental results arising in various
auction markets (see figure 12.4).

Similarly, computational models have played a pivotal role in illumi-
nating issues surrounding the emergence of cooperation. For example,
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Voters = 250
Preferences = Extremist
Issues = 7
Search Range = 0.05
Search Attempts = 10

Voters = 250
Preferences = Centrist
Issues = 7
Search Range = 0.05
Search Attempts = 10

Figure 12.3. Political landscapes and platform search. The political landscape
facing a party is tied to the preferences of the underlying voters and the position
of the opponent. When voters have extreme preferences (left half), the
landscapes facing each party become more rugged and diffuse (upper panels),
while under centrist voters (right half) they become much more concentrated.
In both cases, the platforms of adaptive parties tend to converge on good social
outcomes (lower right of each diagram).

Axelrod’s (1984) landmark study relied on a tournament of computerized
strategies to investigate strategic behavior in the Prisoner’s Dilemma
game, and Miller (1988) showed how such cooperation can emerge
among adaptive agents. Work is also ongoing that incorporates processes
of social learning whereby agents learn by observing others (see, for
example, Vriend, 2000).

12.2 The Interest in Between

The preceding discussion provides a few examples of where the complex
adaptive social systems approach has made contributions to advancing
the frontiers of the social sciences. While dwelling on past accomplish-
ments is useful, we are more interested in the future opportunities that
are potentially available. The study of complex adaptive social systems
opens up vast new frontiers in the social sciences. These frontiers exist
in the space between the current boundaries imposed by traditional ideas
and methods.
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Figure 12.4. Coevolution and learning in auction markets. Here, artificial
adaptive agents “learned” to bid in various single-sided auction markets
using a genetic algorithm. The patterns exhibited by these artificial agents
paralleled those observed in laboratory experiments with humans. Note that
agents that coevolved with other learning agents spent more time using
optimal bidding strategies (y-axis) than agents that learned in an environment
populated by expert strategies. More details can be found in Andreoni and
Miller (1995).

12.2.1 In between Simple and Strategic Behavior

Consider a simple game like tic-tac-toe (aka noughts and crosses). Few
adults actively play tic-tac-toe, as after a fairly short learning period
almost anyone figures out how to force the game to end in a draw and
thereafter it is not of much interest. Technically, tic-tac-toe is a sequential
game with perfect information. Such games can be solved by mapping
out all of the possible paths of play and then working backward through
the resulting tree and selecting moves that will force the play of the
game down favorable paths. Even though the possible paths in tic-tac-
toe are enormous, some symmetries in the game that can be exploited
(for example, the nine possible first moves can be collapsed down to
three) allow adults to intuit the game tree and do the necessary backward
induction without too much effort. Indeed, even chickens can be trained
to play the optimal strategy (Stuttaford, 2002).

Although adults do not get much joy out of tic-tac-toe (other than
playing games against chickens), children—who are unable to do the
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necessary calculations—can enjoy the game for hours. Lest adults feel
too superior to their children, adding even slightly more complication
can quickly overwhelm our own cognitive abilities. Three-dimensional
tic-tac-toe might qualify here, as would the game of chess.

Chess has fascinated players in its modern version for over half a
millennium. Alas, it is a simple game, with sixty-four squares, sixteen
pieces of six possible types on each side, and a limited set of movement
and engagement rules. Nevertheless, it has generated a vast literature,
rancorous scholarly debates, challenging philosophical quests, and the
occasional international incident. The odd thing is that chess is identical
to tic-tac-toe, in that it has a well-defined game tree that, in theory, we
could work our way through and develop an optimal strategy. If our
cognitive abilities were just a bit higher, all of the fuss about chess might
be a bit embarrassing (to put this in perspective, imagine “Fischer versus
Spassky, the tic-tac-toe match of the century”).

The strategic space between tic-tac-toe and chess is an interesting one.
On one hand, both games are isomorphic and, in a very real sense, trivial
to play. On the other hand, while this statement has some meaning for tic-
tac-toe (at least for adults), it seems rather empty for chess. Although we
could assume the existence of a chess god, through which chess becomes
a trivial game using backward induction, such an approach yields little
insight into how chess is really played by humans. While toward the
end of a chess game we may indeed fall onto an equilibrium path of
play, most of the game is played in a wilderness far from any known
equilibrium.

Recent developments in computerized chess programs are instructive
in terms of the interest in between simple and strategic play. Like
humans, computers are unable to generate the entire game tree for chess
except toward the end of the game. Therefore, programs must rely on
various heuristics (for example, queens are more valuable than rooks),
calculations of localized portions of the game tree (often using clever
pruning to avoid pursuing likely dead ends), and other means to decide
on their moves.

Social science has struggled to come to grips with how to model
human behavior. Simple behavioral rules such as price-taking behavior
and voting along party lines dominated social science a half century
ago. Then, the tide turned toward models that relied on rational actors
who were able to do extraordinary calculations on simple problems.
More recently, we have seen a movement toward behavioralism and
learning models. At each point along this path, social scientists have
struggled with what to assume about behavior. A complex adaptive
systems approach allows the level of agent sophistication, and even the
behavior itself, to adapt. The appropriate level of strategic behavior is not
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always clear, as we might expect people to be strategic in some contexts
and rule following in others. Nonetheless, we have good evidence that
humans do not always act like rational agents and that adaptive behavior
may lead to very different outcomes, and thus we need some flexibility to
be able to explore the interest in between the strategic extremes we have
come to rely on.

12.2.2 In between Pairs and Infinities of Agents

Most social science models require either very few (typically two) or very
many (often an infinity) agents to be tractable. When an agent interacts
with only a few other agents, we can usually trace all of the potential
actions and reactions. When an agent faces an infinity of other agents,
we can average out (in physics-speak, take a mean field approximation
of) the behavior of the masses and again find ourselves back in a world
that can be easily traced. It is in between these two extremes—when an
agent interacts with a moderate number of others—that our traditional
analytic tools break down.

Unfortunately, most economic, political, and social interactions in-
volve moderate numbers of people. Sometimes two firms do compete
for a single account, but more often than not dozens of firms compete
for dozens of accounts simultaneously. Once we find ourselves in such a
world, our traditional analytic tools fail us. Of course, notwithstanding
the futility of our tools, actual firms do continue to operate in such
contexts, so there must be some mechanisms, albeit imperfect ones, that
come into play and allow firms to survive. Similarly, the world of politics
is not fully captured by either two-person or large population games.
While we do see two candidates squaring off in an electorial battle, this
is typically the exception rather than the rule. A United States senator
interacts with ninety-nine other senators. To be effective, senators must
navigate a vast strategic landscape that involves voting, amendments,
interest groups, lobbyists, constituents, bureaucrats, and other branches
of the government. Perhaps some of these domains can be isolated and
distilled to interactions with only a few or infinitely many other agents,
but such an approach quickly succumbs to the reality of the situation.
Moreover, even when the interaction is limited to one dimension, it is
difficult for the repercussions to be fully isolated. Almost all actions taken
by an agent have implications across many games simultaneously, and
even if each of these games has a single opponent, the constellation of
them does not.

As we start to increase the number of agents we consider in a
model, the mechanisms facilitating the interactions among agents become
important. One way to keep things tractable is to assume that agents exist
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in a soup and randomly pair off with one another for an occasional clash.
Models of the spread of disease often make this type of assumption.
Alternatively, we can assume that everyone interacts with everyone else
simultaneously. General equilibrium market models and political models
often make this assumption.

New modeling techniques, combining both mathematics and com-
putation, allow us to make the more realistic assumption that social
activity takes place in between these extremes. In these models, agents
interact with one another over well-defined networks of connections;
for example, diseases are transmitted because two people share the same
place of work or travel via the same airline hub and agents trade with one
another because they find themselves in the same marketplace (whether
this is a city on an ancient trade route or an online auction).

Moving in between the old boundaries alters how we think about,
and attempt to change, the world. For example, previous disease models
assumed random mixing and were solved using a system of coupled
differential equations. Although random mixing may be a good assump-
tion if we are modeling the spread of a cold in an elementary school
classroom, it is much less useful if we are trying to model the spread
of a sexually transmitted disease such as HIV-AIDS. The assumption of
widespread promiscuity that knows no geography (random mixing) fails
to appreciate the reality of sexual contact structures. When such contact
structures are explicitly incorporated into the model, we get more
accurate predictions and better policy prescriptions.

12.2.3 In between Equilibrium and Chaos

The rise of complex adaptive systems and its core ideas stems partly
from the intrinsic power of the metaphor. If you consider the data from
key political, social, and economic processes, it is not clear whether
equilibria are the exceptions or the rule. Stock markets soar and crash
(LeBaron, 2001). Political parties rise and topple (Jervis, 1997). Terrorist
acts emerge from, and are perpetuated by, loose networks. While the
notion of social equilibria is an important one, and perhaps even these
phenomena are best reflected as a series of (apparently rapidly changing)
equilibria, we may need to go beyond equilibria to truly understand the
social world.

Complex adaptive systems models allow us to explore the space
between equilibrium and chaos. In the starkness of neoclassical models,
exchange markets result in a single, stable price equating the quantity
supplied with the quantity demanded. Unfortunately, our experiences
with real, experimental, and artificial markets indicate that the actual
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behavior of a market is not so easily captured. In real markets phenomena
like clustered volatility and excess trading remain difficult to explain,
in experimental markets traders seem to be less strategic and far more
irrational than expected, and in artificial markets even minimally rational
traders cause the market to achieve high levels of ex post efficiency, even
though the observed price path is very noisy.

The equilibrium predictions of the standard market model in eco-
nomics contrast sharply with those of spatial voting models from
political science. With even minimal complication, spatial voting models
rarely have equilibria (Plott, 1967). Yet, political parties do seem to
demonstrate a fairly high degree of stability on many issues. As previ-
ously mentioned, in a model using adaptive political parties, parties tend
to converge and dance around the social center of the policy space
(Kollman, Miller, and Page, 1992). This latter result is related to the
coupled landscape metaphor we discussed earlier. Consider a landscape
where the coordinates are positions on policy issues and the height gives
the number of votes such a platform would receive. Adaptive political
parties move around such landscapes in search of the (metaphorical) high
ground. As one party alters its policy positions, however, the landscapes
of the other parties are changed. Thus, the political process is one in
which parties must actively seek the high ground, even as the landscape
underneath them constantly undulates. Although such a process has the
potential to generate a collection of aimlessly wandering parties, we find
that most of the time the high ground, while ever changing, tends to
be concentrated in a contained region of the policy space resulting in
relatively stable platforms.

Equilibria, when they exist, are an important organizing force in social
systems. Nonetheless, there is no a priori reason to think that equilibria
must exist. If we want to understand social systems, we must also account
for those that are complex. As shown by the spatial voting model, the
lack of equilibria does not necessarily mean a lack of predictability and
insight. Using the techniques of complex adaptive social systems, we
now have the capability to explore those systems that lie in between
equilibrium and chaos.

12.2.4 In between Richness and Rigor

Early proponents of complex adaptive social systems models were
optimistic about the prospects for using these models to combine the
richness of more qualitative methods with the rigor of mathematics.
Qualitative methods provide great flexibility in terms of the types of
problems that can be analyzed. At the same time, these methods are



December 11, 2006 Time: 02:31pm chapter12.tex

224 • Chapter 12

often vague, inconsistent, and incomplete. Mathematical methods tend
to be more rigorous with exacting notions of how models are formed
and solved. Yet, the cost of this rigor is often a loss of richness in what
can be studied. Complex systems models may be able to bridge the gap
between richness and rigor.

Consider the problem of getting people seated on a commercial
airplane. Airlines can realize considerable savings by reducing boarding
times because with faster boarding they can fly the same number of routes
with fewer planes. Suppose we have a group of, say, one hundred people
waiting in the passenger lounge that we need to get seated as quickly as
possible on the waiting aircraft. Passengers must board the aircraft, travel
down a lone aisle that is easily obstructed by other passengers, stow any
baggage, and get to their seat and sit down. The only real control the
airline has over this process is the order (based on seat assignments)
in which it allows the passengers to board. A very common system in
current use is to allow passengers to enter the plane starting at the rear
of the aircraft and moving forward, but a number of alternatives exist,
including allowing window-seat passengers to board first, alternating
between the two sides of the aircraft, and so on.

We can construct a model of this process in a variety of ways. One
approach would be to use the average time it takes a passenger to walk,
stow baggage, and get seated, and from this develop a mathematical
queuing model. As an alternative, we could incorporate much more
fidelity into the model via an agent-based model, in which passengers
have connections to one another (say, business travelers versus families),
alter their behavior in response to other passengers (stow their bags up
front if they cannot immediately get to their seat), and so on. Even if we
use an agent-based model, we still must decide on how much detail to
build into the model. At one extreme the model would look very much
like a mathematical queuing model (with the only difference being that
we are using the computer to solve it rather than formal equations),
whereas at the other it could be a very detailed simulation of every aspect
of the passenger experience.

The agent-based model will be much messier than the one that relies
on gross averages. Given that we strive to have stark models, this is a
disadvantage. Yet, we also strive to have useful models, and depending
on the questions we wish to tackle, we need to be willing to trade
off starkness for usefulness. Through stark models we can develop
broad intuitions. Through empirical analysis and case studies we can get
very detailed accounts of what happens under exacting circumstances.
Rich computational models allow us to explore the delicate interactions
inherent in a system in a much more expansive way and fill in the space
in between.
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12.2.5 In between Anarchy and Control

The stock market exemplifies the space between anarchy and control.
Our theorems tell us that the market should efficiently aggregate infor-
mation through the price mechanism. Yet, fluctuations in price appear
to far outstrip variations in information. The market sometimes appears
to have a mind of its own, yet it does not collapse into complete anarchy.
Computational models allow us to mimic such processes (Arthur et al.,
1997). They produce behavior not unlike real markets, and we can use
them to begin to experiment with attempts to control such worlds. For
example, we can see if increasing the amount that can be bought on
margin will reduce or eliminate bubbles.

We can extend this idea to think about institutions more broadly.
Attempts to assist developing countries through institutional reforms
and large projects have, on the whole, been unsuccessful (Lewis and
Webb, 1997). People who study development have learned that it
may be difficult to find a common method that works across all
environments. An institution that works in one culture may not work
in another. Ostrom (2005) explains these differences by reference to
context. Institutions do not sit in isolation from one another, but are
linked to each other and the culture within which they exist. Cultural
features like the level of trust, the set of common behavioral rules,
and the density of social networks all provide an important context
for an institution (Bednar and Page, 2006). We can use computational
models to explore these contexts and develop appropriate institutional
designs.

Harnessing emergence may be an important means by which to create
institutions that can use apparent anarchy to create control. As we saw
in chapter 2, a well-designed political institution can introduce noise into
a decentralized system in such a way that it promotes the emergence
of productive global organization. We also know that institutions like
markets can be effectively used, say, to aggregate opinions about political
races and world events. We suspect that complex systems ideas will lead
to a new appreciation of the importance, and potential for exploitation,
of the space between anarchy and control.

12.3 Here Be Dragons

The complex adaptive social systems approach provides many opportuni-
ties to explore the interest in between the usual scientific boundaries. This
vast unexplored territory is home to many of the most interesting and
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ultimately important scientific questions. Nevertheless, we have tended
not to stray too far from known waters for fear that hic sunt dracones.

We now have within our grasp the ability to explore these uncharted
waters. Like any such exploration, perils abound. It may be that our
intellectual conveyances are inadequate to the task, and that we will
founder upon the many shoals that surely exist beneath the inviting seas.
Or, perhaps this territory is one of false promises, and our explorations
will uncover little of value. Nonetheless, the early expeditions prove that
the seas can be sailed and suggest at least the possibility of potential
riches, so explore we must, even if, as T. S. Eliot (1942) wrote, “the end
of all our exploring will be to arrive where we started and know the place
for the first time.”
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Epilogue

It is all very beautiful and magical here—a quality which
cannot be described. You have to live it and breath it, let the
sun bake it into you. The skies and land are so enormous, and
the detail so precise and exquisite, that wherever you are, you
are isolated in a glowing world between the macro- and the
micro- where everything is sideways under you, and over you,
and the clocks stopped long ago.

—Ansel Adams, Letter to Alfred Stieglitz

Do not seek to follow in the footsteps of the wise. Seek what
they sought.

—Matsoo Basho

Here we have explored models that from simple beginnings result
in systems imbued with scientific beauty and mystery. The precise and
simple details of each model are fully responsible for, yet simultaneously
rather removed from, the majesty of the resulting outcomes. We find
ourselves immersed in a world that lies between the micro and macro,
that twists our experiences and expectations, and that hints at the interest
in between the usual boundaries we impose on our models. We are on
the edge of a vast frontier, where the exquisite composition of what once
was a distant world is beginning to slowly yield its secrets to new ways
of inquiry that are starting to make the faraway nearby.

The Interest in Between

The study of complex systems attempts to illuminate the interest in
between our usual scientific boundaries, and in so doing, paradoxes
abound. It is the study of how the few are different from the one or the
infinite. It is the exploration of time in a highly choreographed dance.
It is a search for tight connections in a loosely coupled world. It is the
precise characterization of when details do not matter.

Modeling, by its very nature, is about extremes. When we model
systems we attempt to push our scientific fantasies to the farthest edge of
reality, in hopes of gaining some new insight. Unfortunately, sometimes
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in the pursuit of extremes we kill off the most interesting parts of the
world—“water which is too pure has no fish.”

One important insight from models of complex adaptive social systems
is the interest in between the extremes. Using these models, we are
finding that as we move away from the extremes we do not incrementally
approximate what has come before, but instead are thrust into new
realms of experience.

The interest in between has long been known. For example, in eco-
nomics we have lovely, compact models of firms behaving as monopolies,
duoplies, and perfect competitors, but once we are in the realm of a few
firms, modeling and prediction become difficult; in physics we can solve
mathematically the two- and ∞-body problem, but no clean solutions
exist for the intermediate cases. It is as if much of modern science counts
using only three numbers: 1, 2, ∞.

Throughout the social sciences we have fallen into this odd numer-
acy. We assume agents that are either hyperrational and informed or
completely myopic. We consider models where time is instantaneous
and place nonexistent. We represent our agents by a single prototype
or have a world filled with so much heterogeneity that it results in
unstructured noise. Our agents are either left isolated or are completely
connected to one another. We seek an equilibrium in a system fraught
with change.

Even with these restrictions, great progress has been made in under-
standing the complexity inherent in social systems. That being said, we
now find ourselves with a new set of tools that, at least given our first
decade of experience, appear poised to free us from the extremes and
allow us to explore the interest in between.

The introduction of noise into a model provides another example of
the interest in between. In noiseless systems, agents quickly get stuck,
often in inferior configurations. With a lot of noise in the system, chaos
reigns, and little, other than frenetic movement, is possible. Adding just a
bit of noise to a system, however, often induces order and leads it toward
optimization.

Social Complexity

Social agents fundamentally alter the behavior of complex systems. As
previously discussed, when a car is about to crash, the interacting system
of molecules in the bumper behaves very differently than the interacting
system of passengers in the cabin, and it is only at the moment of
impact that the behavior of these two types of agents (unfortunately)
converges.
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Thoughtful social agents can fundamentally alter the behavior of com-
plex systems. In our Forest Fire model, we saw how, under homogeneous
adaptation, the agents moved the system to a state that was at once
optimal and fragile. When we allow these agents even more flexibility,
they alter the system and allow it to enter new domains of behavior where
the previously known “laws of nature” appear to no longer hold sway.
In such a world, the discovery by the agents of microstructures like fire
walls alters the physics of the world, and the agents are able to move the
system into more interesting regions of behavior where they can get more
out of the system while simultaneously reducing brittleness.

The simple choices of thoughtful agents can often have large impacts
on the behavior of complex systems. In the self-organized critical
systems we studied, we saw how thoughtful agents have the ability to
transform the fat-tailed-distribution characteristics of these systems into
any possible distribution. Even agents motivated by the simplest goals
take a system characterized by avalanches on every scale and turn it into
one with a rather orderly and short-lived periodic cycle.

As we admit finer gradations of thought, our systems are suddenly
transformed into worlds rich in possibilities. To take just one example,
consider our models of adaptive agents that can strategically com-
municate with one another. Giving agents the ability to communicate
allows an unfolding of behavioral repertoires that begins by allowing
simple self-recognition and, once that arises, creates a vibrant ecosys-
tem of conversations, mimics, and other behaviors, which ultimately
allow the system to operate in a new realm of previously inaccessible
activity.

Throughout this work we are finding that adaptation implies more
structure, not less. There has been an implicit assumption that because
adaptive systems exist in the messy in-between, that the resulting models
will be mired in incomprehensible layers of detail. Alas, the opposite
appears to be the case: the messy in-between results in a reduction of
complex behavior.

That is not to say that the emergent structures from messy models are
always easy to predict or comprehend. We see a great deal of emergent
perversity, as macrobehavior often differs radically from micromotives.
Clearly there are worlds where the details do not matter, but we are still
far away from having a theory of when this is so.

The link between the micro and macro is not as clear as we once
thought. We must explore a new realm that both acknowledges the
microfoundations of macrobehavior while simultaneously recognizing
the potential for seemingly magical transformations that link one level
to another. Of course, such magic is the impetus for the scientific
exploration that in time will eventually lead to understanding.
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The Faraway Nearby

Over the past decade, scholars have made much progress on understand-
ing the complexity that surrounds us. The stimulus for this progress
is a recognition that there are deep commonalities—ones that do not
respect the usual academic boundaries—across the various systems we
observe in the world. These commonalities drive the quest, and through
a combination of new ideas and tools, we are slowly starting to reveal
complexity’s secrets.

The explorations over the past decade have allowed us to enter new
realms of understanding. Alas, we are only now at the point where we
have an innate sense that we have embarked upon an important mission.
There are intriguing hints everywhere about the promise of the journey
to come, and for the moment the path ahead is clear enough to proceed.
No doubt that many obstacles will arise as we move forward, and while
most of these will be easily surmounted, some of them may force us to
alter our path in unanticipated directions. Nonetheless, the underlying
journey seems sound, and great advances lack detailed maps.
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An Open Agenda for Complex Adaptive
Social Systems

It then occurred to me that this was not the first time I had
been given a map which failed to show many things I could
see right in front of my eyes. All through school and
university I had been given maps of life and knowledge on
which there was hardly a trace of many of the things that I
most cared about and that seemed to me to be of the greatest
possible importance to the conduct of my life. I remembered
that for many years my perplexity had been complete; and no
interpreter had come along to help me. It remained complete
until I ceased to suspect the sanity of my perceptions and
began, instead, to suspect the soundness of my maps.

—E. F. Schumacher, A Guide for the Perplexed

Part of the joy of science is in chasing rainbows. Just when it seems
as though the elusive quarry is within your grasp, it slips away and the
quest must begin anew. With each new discovery about the nature of
complex adaptive social systems, more questions arise.

In this appendix we outline some key elements of an open research
agenda for the area of complex adaptive social systems, as well as some
of the key contributions to date. These elements span a broad spectrum of
science, and our hope is that they will provide a scaffolding around which
various research efforts can take hold. Though far from complete, the
items discussed demonstrate how, from a handful of provocative models,
key insights into a more general science have emerged as complex systems
research has moved from the fringe to the frontier.

A.1 Whither Complexity

In A New Kind of Science (2002), Steven Wolfram exhaustively investi-
gates simple cellular automata. Wolfram makes several contributions, not
the least of which is reminding us that simple rules in stark environments
can generate complex aggregate behaviors. Thus, one explanation of why
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we see complexity is that simple rules generate it. This is an important
idea, as we might have expected that simple rules in simple environments
create only simple things.

Wolfram goes on to suggest that his restriction to simple models
is an important one. In particular, he finds a natural bound on the
computation a system can perform, and once this bound is reached, there
is a universal equivalence that can allow one system to emulate another,
as long as we are free to manipulate the inputs and reinterpret the
outputs. Moreover, the suggestion is made that most systems (including
some of the very simple ones he explores) have achieved this equivalence
milestone.

In this sense, a suitably set up and interpreted pool table is the same
as a human brain is the same as a weather system is the same as an
economy. Of course, representations do matter, and what can be easily
computed in one system is often difficult (but still possible) to compute in
another. Thus, to use a simple cellular automata to calculate, say, the first
few prime numbers may require a very complex calculation on how to
set the initial conditions and interpret the output. This latter calculation
could be much more “difficult” to compute than the original problem,
just as the complexity of a compiler can far exceed the complexity of the
programs it produces.

It is not clear what to make of computational equivalence. Yes, there
is a threshold in which systems are related to one another, but given
the difficulty of moving among them, is this anymore useful than saying
that skateboards and Ferraris are equivalent means of moving about?
Certainly, in some contexts, skateboards and Ferraris do share a lot in
common, and knowing about one may lead to insights about the other.
Yet, at some point, such insights break down.

Moreover, adaptation is not an inert force in these systems. In
Wolfram’s world, you either have behavior that is obviously simple
or behavior that is (more likely than not) equivalently complex. The
presence of adaptive agents begins to muddy this picture. Suppose a
system composed of adaptive agents leads to a simple outcome. Such
an outcome may present an opportunity for agents to further adapt and,
in so doing, alter the outcome.

For example, imagine a stock market in which the prices oscillate with
a known periodicity. Adaptive agents will respond to such a situation
by selling when the prices are high and buying when the prices are low,
altering the periodicity. The presence of adaptive agents drives the simple
system into the complex regime where predictions, if at all possible,
become extremely difficult.
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A.2 What Does It Take for a System to Exhibit
Complex Behavior?

One premise of complex adaptive social systems research is that more
is different—that is, interacting agent systems take on a behavior that is
qualitatively different from the behavior of any individual agent. While
there are many examples of such behavior, there have not been systematic
analyses of the fundamental conditions needed before a system will
display such a response.

What is it about interacting agents that leads to complex behavior? Is
there some behavioral threshold that must be breached before complexity
can arise? Are there certain features that will prevent (or, for that matter,
enhance) complexity? We know that certain simple rules can generate
complex behavior, but so can complex rules. We also know that complex
rules can generate simple behavior; for example, in general equilibrium
theory sophisticated rules lead to stasis.

It appears that certain features of a system are more likely to lead to
complex outcomes. For example, heterogeneity, adaptation, local inter-
actions, feedback, and externalities all seem to induce more interesting
patterns. Consider a market of homogeneous, hyperrational consumers
trading goods at a single location. If these goods have no externalities
among them, we would expect an equilibrium to arise. Now, introduce
externalities, place these agents in space, or assign them different learning
rules, and the market outcome is likely to exhibit even more complex
patterns.

A.3 Is There an Objective Basis for Recognizing
Emergence and Complexity?

Emergence is often subjectively identified during ex post analyses of
systems. Is there an objective basis for defining emergence? If you put
a frog in a blender and turn it on, there is only a macabre interest in
the resulting chemical soup. If, however, you start with a chemical soup
and run the blender backward, and out of the froth pops a fully formed
frog, then something rather different has happened. Is there some easy
and reliable way to separate out these two experiences? Of course, this
would matter little if we weren’t seeing so many frogs popping out of the
froth of both nature and our models.

We can often explain emergent phenomena piece by piece. For
example, patterns like a glider in the Game of Life can be understood by
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looking at each of its parts and the associated rules. Even for something
as simple as a glider, however, this requires an enormous amount of work
and rarely produces insight.

The path of the glider can be predicted without resorting to the
microlevel rules. Thus, in a well-defined statistical sense, it requires less
information to predict the path of the glider by thinking of it as a “thing”
than it does to look at the underlying parts. In this sense, the glider has
emerged (Crutchfield, 1994).

Note that this is not saying that emergence occurs when the parts
cancel one another out. To the contrary, the parts are aggregating in
complex and interesting ways. What they create, the emergent pheno-
mena, has a statistical signature of its own, one that can be predicted
more parsimoniously without looking at all of the parts. The concept
of emergence has thus made the transition from a metaphor to a
measure, from something that could only be identified by ocular magic
to something that can be captured using standard statistics.

Identifying complexity has also been problematic. How do we separate
complex systems from merely complicated ones? A check of the literature
reveals that there are a variety of ways to measure complexity per se, but
at this point in time there is no simple way to unify these definitions.

Trying to unify these definitions may be asking too much. Complexity
can occur at many levels, including time, space, and interactions. Perhaps
we are expecting too much if we want a single measure of complexity that
captures all of our intuitions. Indeed, not having a uniform definition of,
say, architectural beauty has not held back architecture, nor should the
lack of a single definition of complexity hold back the science of complex
systems.

A.4 Is There a Mathematics of Complex Adaptive
Social Systems?

While computational models of complex adaptive social systems are a
valuable theoretical tool, there may be other complementary tools that
can be developed. The calculus allowed us to take certain, difficult-to-
solve, nonlinear equations and reform them into simple linear problems.
Is there a mathematics of complex adaptive social systems that will
provide a similar transformation? Any simulation can be written as an
instantiation of a recursive function, suggesting that a given model run is
nothing more than a sequence of interconnected algebraic equations. But
can we say something more general here?

Ultimately, we are seeking a simple explanation for complex behavior.
While there are examples from cellular automata that suggest that the
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only way to predict the future behavior of the system is to let it fully run
out, the obvious hope is that there are other opportunities to uncover
more compact descriptions of complex behavior.

A.5 What Mechanisms Exist for Tuning the
Performance of Complex Systems?

While predicting and understanding complex adaptive social systems is
a key goal of this research agenda, we would also like to have means
for influencing the outcome of these systems, or as Karl Marx (1845)
said, “philosophers have only interpreted the world in various ways; the
point, however, is to change it.” Much of the quest for good theory in this
area has been driven by the desire to use it to improve the outcomes of
real social systems. Indeed, “theories” of complex adaptive social systems
are tested on massive scales every day, when governments implement
various policies that often involve substantial resources and ultimately
have tremendous impacts on the lives of countless citizens.

Insofar as real social systems behave according to the laws of complex
adaptive social systems, what policies can be used to direct the outcomes
of these systems? We know that some mechanisms, such as agent sorting
in Tiebout worlds (Kollman, Miller, and Page, 1997) and double-auction
markets, can naturally lead systems toward superior outcomes. What
other mechanisms can be employed on this front?

Decentralized adaptive systems often display the ability to work
around damage and self-repair—as Crichton’s fictional Ian Malcolm
said, “Life finds a way.” Given this, what kinds of policies can lead to
real change? We know that some complex systems enter regimes where
they are very sensitive to the existing conditions, as illustrated by the
well-known “butterfly effect” in chaos theory. Can such conditions be
identified by observing the system, and if so, can they serve as useful
leverage points from which to alter a system’s subsequent behavior
dramatically with only a small amount of effort?

A.6 Do Productive Complex Systems Have
Unusual Properties?

What does it take for a complex system to undertake productive behav-
ior? Previously we discussed the concept of the edge of chaos, whereby
systems poised at the “Goldilocks point” can perform computation
because the system is neither too static nor too chaotic. While metaphori-
cally rich, is there a more exact statement of such a proposition?



December 5, 2006 Time: 12:47pm appendixa.tex

236 • Appendix A

What features of a complex system will either allow or prevent it from
undertaking productive behavior? Moreover, is there some innate force
that drives adaptive systems to this place?

A.7 Do Social Systems Become More Complex over Time?

Is there a time’s arrow of motion on social systems that inevitably leads
them to become more complex? If so, what drives such an arrow? We
often see social artifacts, be they technological goods or institutions,
becoming more complex over time. For example, software tends to
become more resource intensive, feature laden, and sophisticated with
time; razors acquire more blades; tax codes become more elaborate; laws
more convoluted; and so on. Of course, there are movements toward
simplicity on occasion, as tax codes are reformed, simplified software is
developed (or rediscovered), and so forth.

In a world of thoughtful, interacting agents, complexity might emerge
as those agents begin to “game” the system and, eventually, each other.
There may be inherent forces in systems that drive out predictability. For
example, in stock markets agents have incentives to find, and exploit, any
regularities. In these types of systems, the actions of the agents result in
the destruction of the regularity, and an increase in complexity.

However, there are other types of social systems in which the agents
seek regularity. For example, institutions like legal or voting systems
require a degree of predictability if they are to maintain legitimacy. As
a system becomes more complex, causality is more difficult to infer and
agents may actively attempt to reduce the apparent complexity by, for
example, decoupling parts of the system or altering their behavior.

A.8 What Makes a System Robust?

Inherent in many complex adaptive social systems is a degree of robust-
ness. For example, consider a city. Over very long time spans a particular
city can remain whole, despite a multitude of changes in terms of both its
fundamental structures and occupants. Similarly, a beehive can persist as
an entity for many, many years even though its population is continually
turning over (worker bees, constituting the vast majority of the hive, live
for around one month in the summer and three months in the winter).

An analysis of robustness can take place at many levels. First, we can
focus on the robustness of an entity relative to agent details. That is,
which details of the agents matter in terms of maintaining the system’s
coherence? Second, we can consider the robustness of the entity to
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perturbations in the environment. What does it take for a system to
persist in the face of external changes? Alternatively, we could frame the
question as uncovering the factors that make a given system brittle.

A.9 Causality in Complex Systems?

Recognizing and understanding causality is one of the big challenges
for agents within, and modelers of, complex systems. When agents in
a complex system act, they may change the local or even the global path
of events. Predictive agents, the kind that we often consider in social
systems, need to have an understanding of the causal implications of their
actions. Of course, we know that within the model is a full description of
the dynamics, and hence the causes, of all actions, but such a description
is unsatisfactory, as useful notions of causality require a much more
compact and easily understood framework.

Modeling how agents simplify complexity so that they can predict and
act is an important topic. There are a variety of techniques whereby
apparent complexity can be condensed into useful approximations
(indeed, the process of modeling itself is one such technique). Moreover,
understanding how such simplifications themselves can influence the
resultant complexity is also of interest.

A.10 When Does Coevolution Work?

There are nice examples, both natural and artificial, where coevolution
allows the system to achieve previously inaccessible ends. For example,
in biology we see “arms races” in which two species coevolve into very
specialized niches, such as when a wren develops the ability to recognize
and eject a cuckoo chick that has taken over its nest, and in response the
cuckoo chick develops a finer begging call for food. In societies, we see
coevolution between, say, legal systems and criminal activity.

Harnessing coevolution is a powerful way to adapt systems. Evolution
needs to exploit opportunities inherent in the underlying structure of the
world. Unfortunately, for most problems, the space of good structures
is much smaller than the space of bad ones. In such a world, most of
the feedback takes the form of “bad idea” rather than “good idea,” and
thus it is difficult for an evolutionary system to gain enough purchase
to make rapid progress. Coevolution, however, lowers the fitness bar
initially and, in so doing, allows systems to evolve more rapidly toward
good structures. Over time, as the coevolving structures get better, the bar
is raised and more selective pressure is exerted in the system. Coevolution
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allows the evolving entities to “challenge” each other progressively.
By slowly, and automatically, ramping up the challenges, rapid evolu-
tionary progress becomes possible.

A.11 When Does Updating Matter?

There are a variety of ways to activate agents in models of complex
adaptive social systems, including simultaneously and a multitude of
asynchronous options. As Bernardo Huberman has suggested, apart
from people performing in marching bands or participating in military
parades, most human updating is asynchronous. People update at
different rates for various reasons ranging from their incentives to
their access to information. Along with human systems, many other
phenomena probably have asynchronous elements.

Does updating matter?
There are some theoretical results where agent timing can make a big

difference in the outcome. For example, consider game theory. Games
in which players sequentially take turns often result in outcomes very
different from those in which the players move simultaneously.

We know of some complex systems, for example, Abelian sand piles,
where the order of agent action makes little difference. Unfortunately,
there are other situations in which updating does matter. The most
dramatic example of this is in the Game of Life: in its synchronous
instantiation it creates beautiful patterns and structures capable of
universal computation, but under asynchronous updating the world
quickly becomes barren.

The transition between synchronous and asynchronous updating is,
in some ways, rather subtle as it only requires agents taking actions
(or observing the actions of others) with just a slight offset from one
another. Yet, as can be seen in the case of the Game of Life, it can lead
to a dramatic difference—the difference between universal computation
and mush.

A.12 When Does Heterogeneity Matter?

How do systems behave as we move from homogeneous to heteroge-
neous collections of agents? Much of empirical social science eliminates
the impact of heterogeneity by relying on means of variables and thereby
allowing the heterogeneity to cancel itself out. However, heterogene-
ity may not always cancel itself out, especially in the presence of
dynamic feedbacks and other interconnections among the agents. Thus,
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in many models the tail (of the distribution) wags the dog. For example,
the probability of a riot depends more on the number of people who
are really angry than on the average level of discontent. To assume
homogeneity is often to assume away much of what is interesting about
the world.

There also may be thresholds as we increase the heterogeneity in a
system that cause transitions into new forms of behavior. For example,
the introduction of just a bit of heterogeneity into a homogeneous world
may substantially alter the system’s behavior. Moreover, as we further
increase the amount of heterogeneity in the system, we might see yet
another transition as the additional heterogeneity begins to homogenize
the system. Perhaps it is the case that, as we increase heterogeneity,
we move from simple systems to complicated ones back to simple
ones.

A.13 How Sophisticated Must Agents Be Before
They Are Interesting?

What happens to systems as we move from simple particle-like agents
to sophisticated social ones? The first challenge here is to have a clear
definition of the levels of agent sophistication. At one extreme, it is
relatively easy to characterize a hyperrational, hyperinformed, hyperable
agent that optimizes its behavior, given some objective. It is more difficult
to define how one smoothly degrades such behavior and ends up at
the opposite extreme of a myopic simpleton. Regardless of how we
do this task—there may be many options—some interesting questions
emerge.

Agent sophistication may not even be well defined. One cannot
smoothly track behavior from optimizing to myopic. Intelligence,
sophistication, whatever we want to call it, is more than one-dimensional
and may not be easily “dialed in.” However, within any one class of
rules, often there does exist a dial. We can make the rules within a
given class more “intelligent” by, say, varying the number of past periods
remembered or future periods forecasted. We might also be able to move
between classes of rules where one class embodies more intelligence than
the other.

One key question is when does agent sophistication matter at all? We
may have social systems where even a “dumb” agent can do “smart”
things (think Forrest Gump). Another question is how rapidly does the
system change as we degrade agent sophistication? Is there a smooth
transition as we slowly degrade sophistication or are there rapid phase
transitions where small changes in agent sophistication lead to large
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changes in system behavior. Of particular interest is how much difference
does the very first movement away from full sophistication make?

The impact of agent sophistication is linked to the environment.
For example, in a double-auction market the introduction of some
irrationality is not likely to be noticed. In a game in which agents are
trying to guess the guesses of other agents, however, a small amount of
irrationality can wreak havoc. Not surprisingly, as cognitive feedback
increases, that is, when it matters what you think I think you think and
so on, the introduction of irrationality has more impact.

A related issue is whether we can easily calibrate computational
agents to human ones. There are many potential uses for such a
computational proxy. For example, by using artificial-adaptive agents
on a class of games, we can identify a priori which games are likely
to result in interesting experimental outcomes with human subjects.
Another application of proxy agents would be in the design of new
institutional forms. Here we could use proxy agents to explore large
classes of potential institutions to help us identify which designs are most
likely to meet our objectives.

A.14 What Are the Equivalence Classes of Adaptive Behavior?

A full science of complex adaptive social systems requires a theory of
adaptive behavior. Unfortunately, while there is typically one way to
be optimal in the world, there are lots of ways to be adaptive. Given
the potential multitude of adaptive behaviors, we may find ourselves
confronting a zoofull of exotic agents, in which formulating a cohesive
theory of adaptive behavior will be difficult, if not impossible.

Of course, it could be the case that, notwithstanding the vast array of
potential adaptive behaviors, the behavior we observe in the real world
is only a small subset of these possibilities. Alas, this seems like wishful
thinking, as there do not seem to be any obvious convergence points,
given the vast array of options.

Alternatively, it may be the case that a lot of adaptive behavior falls
into a single equivalence class. If such a class exists, then the exact details
of adaptation no longer matter much to the outcome. Thus, we can “let
a thousand flowers bloom, a hundred schools of thought contend,” and
still be able to build a cohesive theory of adaptive agents.

Indeed, there already is some evidence of equivalence classes for
adaptive behavior. Genetic algorithms define a fairly broad class of
adaptive computation techniques that require potential solutions to be
represented in a framework that allows “genetic” modifications linked
to reproduction by performance. Implementations of such algorithms



December 5, 2006 Time: 12:47pm appendixa.tex

An Open Agenda • 241

often differ in a variety of ways; for example, they may use very different
kinds of representations, selection mechanisms, and choices of specific
operators. Notwithstanding these choices, the resulting algorithms tend
to perform more or less identically.

This experience with genetic algorithms suggests that certain types of
equivalences are possible. The deeper suspicion is that such equivalences
extend to a broad variety of other adaptive systems. To understand
adaptation fully, we may first need to develop a well-defined taxonomy
of adaptive behavior—that is, what are the key features that make a sys-
tem adaptive. Once these features are defined, we may be able to extract
their individual impacts from the specific context and ultimately find that,
say, any system that embodies reproduction biased by performance will
tend to imply a particular type of behavior.

There is also evidence from computational-learning models that dif-
ferent kinds of adaptation lead to similar predictions. In many games,
Hebbian learning, replicator dynamics, fictitious play, and best-response
learning lead to qualitatively similar individual and social behavior. That
is not to say that these learning rules always lead to similar behavior, only
that in many environments they do, and thus the details may not always
be that important.

A.15 When Does Adaptation Lead to Optimization
and Equilibrium?

While there is no imperative for adaptive systems to result in optimal
structures, there are likely to be conditions under which simple adaptive
systems produce optimal solutions. Under what set of general conditions
will an adaptive system uncover the optimal solution to a problem? An
alternative way to structure this question is to find the conditions under
which certain problems become hard for adaptive systems to solve.

Although there are mathematical results, such as the No Free Lunch
theorem (Wolpert and Macready, 1997), that suggest that no adaptive
algorithm is uniformly best on all optimization problems, social agents
likely exist in a fairly narrow part of the space of all problems. In some
areas of adaptive algorithms, such as genetic algorithms, there have been
attempts at defining “hard” problems, that is, problems with inherent
structural elements that confound the adaptive mechanism.

Knowledge of when adaptation leads to optimization and or equilib-
rium would be useful in a variety of ways. With this knowledge, we
would be able to deploy better our theoretical tools; for example, we
would have some guidance as to when optimization techniques are likely
to result in good predictions about the world.
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Knowing more about adaptation would also help us refine our predic-
tions in other contexts. For example, even though first-price, open-outcry
auctions lead to the identical theoretical outcome as second-price, sealed-
bid auctions, social systems may employ the former more than the latter
because agents may have a far easier time adapting good strategies in
such an environment (“bid a little higher if you can still make money”
versus “if you reveal your true value and you have the second highest bid,
then . . .”). Practically, such knowledge might give us good insights into
how to restructure situations so that adaptive agents can achieve better
performance.

Neoclassical economists see systems primarily as either in equilibrium,
heading toward equilibrium, or moving along a sequence of equilibria.
Biologists and ecologists see systems as complex, dynamic networks of
interactions. To say that economic phenomena are static and ecosystem
phenomena are complex likely reflects field-specific modeling imperatives
rather than deeper realities. Both types of systems can exhibit stasis and
complexity.

A.16 How Important Is Communication to Complex
Adaptive Social Systems?

Social systems are about interacting agents. Agents interact by taking
direct actions that alter one another’s worlds and indirect actions, via
communication, that set the stage for the future. For example, two agents
in a market may undertake substantial communication in the form of
making offers, chatting one another up, and so on, prior to agreeing on
the final terms and executing the trade. Much of current social science
theory tends to ignore the communication phase of social interaction.

Communication among agents can have a profound effect on the
behavior of a complex system. The ability to communicate expands
the behavioral repertoire of the agents, introducing a variety of new
opportunities ranging from the creation of abstract agreements to the
opportunity to mimic and deceive. Communication can radically alter
the performance of a social system; for example, ants leave pheromone
trails that allow the colony to self-organize into a coherent mass for
more efficient hunting. Of course, communication can also introduce
detrimental outcomes by, say, allowing agents to collude in an auction.
For example, in a 1996 Federal Communications Commission air-waves
auction, bidders used the insignificant digits of their bid amounts to
communicate their territorial intentions to the other participants. This
form of communication appears to have arisen in earlier auctions in a
more innocuous variation where it was used to display corporate logos
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and even the phone number of the congressman responsible for the
auctions.

A.17 How Do Decentralized Markets Equilibrate?

It is time for the invisible hand to become more visible.1 Although the
theory of supply and demand makes fine predictions, it offers little in the
way of helping us understand the mechanisms underlying these systems.
As Hayek (1945, 530) suggested, there is a need to “show how a solution
is produced by the interactions of people each of whom possesses only
partial knowledge.” Is there a coherent, plausible model that can help
us understand the mechanism by which prices form in decentralized
markets?

Uncovering such a mechanism will give us new insights into a well-
known and long-standing issue in the social sciences. Moreover, it may
prove to be a gateway into investigations of new market mechanisms
that will have many practical applications. Improved communication
and information-processing capabilities have opened up new possibilities
for the creation of new markets. Similarly, government policies, such
as selling the commercial rights to use the radio spectrum, have also
necessitated the development of heretofore unknown auctions, like the
“electronic simultaneous multiple-round” auction used by the Federal
Communications Commission. Having an accurate theory by which to
understand, design, and evaluate existing and potential markets would
be of great value.

Finally, a solid theory of market mechanism might help explain why
we see certain persistent market types. Around 2,500 years ago, simple
auction rules began to emerge in Babylon. Since that time, societies have
implemented an astonishing array of market mechanisms (although even
these represent a small subset of all potential markets). Of these markets,
only a handful are used to trade the vast majority of the world’s goods
and services. Is there some driving force that causes such a convergence?
How much do particular mechanisms, or parts of mechanisms, actually
matter?

A.18 When Do Organizations Arise?

Organization is a fundamental issue spanning the world of complex sys-
tems: atoms form molecules, molecules form cells, cells form organisms,

1Indeed, you have to wonder about any theory that relies on “invisible” driving forces.
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organisms form firms, and firms form nations. What underlies this
apparent order? When will organizations emerge or dissipate?

The question of organization touches on many of the previous themes.
Organizations can emerge from a variety of substrates. They tend to
persist, even though their constituent parts do not. They exist in a state
that allows them to be productive without being dissipative.

A.19 What Are the Origins of Social Life?

The origin of life question has played a central role in the biological
sciences. Alas, the origin of social life has had much less attention.
Such questions lie at the heart of understanding our world. How do we
recognize social life? What are the minimal requirements for it to arise?
What are the deep, common elements in social systems that transcend
time and agents? Is social life inevitable?

Various research efforts in complex systems have shown how key
social features, like cooperation or communication, can emerge. Yet, even
these models tend to rely on some previously defined atomic structures.
For example, agents are assumed to have strategic frameworks or are
endowed with the ability to send and receive communication tokens. Is it
possible to unwind these models further, allowing even more to emerge?
Ultimately, can we realize in silico a dream similar to Darwin’s, where
starting from so simple a beginning we see endless social forms, most
beautiful and most wonderful, arise?
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Practices for Computational Modeling

Yet the question of its modus operandi is still undetermined.
Nothing has been written on this topic which can be
considered as decisive—and accordingly we find every where
men of mechanical genius, of great general acuteness, and
discriminative understanding, who make no scruple in
pronouncing the Automaton a pure machine, unconnected
with human agency in its movements, and consequently,
beyond all comparison, the most astonishing of the
inventions of mankind. And such it would undoubtedly be,
were they right in their supposition.

—Edgar Allan Poe, Southern Literary Messenger

In 1769 Baron Wolfgang von Kempelen created an “automaton” chess
player. The device consisted of an artificial “Turk” seated behind a
cabinet full of mechanical marvels. The Turk would move the pieces
with its mechanical arm and even nod its head disapprovingly when
the opponent made an illegal move (apparently a feature that was well
utilized when it played Napoleon Bonaparte). The automaton was a
sensation around the world.

The most important feature of the automaton was indeed its clever
mechanical design—especially the feature that allowed a skilled human
chess player to remain concealed to the audience. While consciously
hidden assistants are not a scientific concern, the area of computational
modeling is new enough that adhering to a set of best practices will
do much to advance the acceptance and productivity of this approach.
Like all scientific fields, the biggest danger with computational models
is not outright fraud (a relatively rare event across all fields of science),
but the unconscious acceptance of faulty results. It is easy for scientists
to fool themselves, and all scientists must be their own harshest critics
and do everything they can to maintain and expose the full integrity of
their work.

In this appendix, we begin to outline some practices that should help
promote quality science in computational modeling. Note that most of
these practices have very little to do with computational methods per
se, and that is by design—good computational modeling is more about
modeling than computation.
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B.1 Keep the Model Simple

Making sure that your model has just enough of the right elements and
no more is the most fundamental practice for any kind of modeling,
and computational work is no exception. With a few well-placed lines
of a pen, an artist can represent a complex world in a very simple and
understandable way. Scientific modelers must aim for a similar level
of simplicity and clarity. Modeling is like stone carving: the art is in
removing what you do not need.

It is often easy to recognize a simple, well-formulated model after
the fact, as such models have a strong intuitive appeal. Getting to this
point usually requires a combination of skill, practice, effort, revision,
and art—a mix of abilities that is difficult to teach directly. A first step
in developing such skills is appreciating the elegance of seminal models
from a variety of fields.1 Great artists study the masters; so too must great
modelers.

Once simplicity is achieved in the model, many of the practices
suggested here become much easier to attain.

There is a necessary tension between pursuing simplicity and exploiting
the ability of computational models to interconnect key parts of the
world. For example, to understand the dynamics of an epidemic, we
need to understand how diseases are transmitted between people; how
people come in contact with one another via transportation, work, and
home environments; and how people react once they become ill or hear of
illness in others. As we incorporate each of these elements into the model,
it becomes more complicated—though avoiding this type of complication
is difficult if we truly want to understand this type of problem. We can
admit such complications into our models if we are careful to keep each
of the constituent parts simple. Good models strip phenomena down to
their essentials, yet retain sufficient complication to produce the needed
insights.

B.2 Focus on the Science, Not the Computer

The most important feature of a computational model is the model, not
the computer. Thus, computational models must be justified solely by the
model and not on their clever (or fast, current, etc.) algorithm (or, for

1In economics, works like Akerlof (1970), Hotelling (1929), Schelling (1978), and Stigler
(1961) offer a few examples.
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that matter, hardware, software, etc.).2 New technological developments
may enhance our ability to explore better existing models or create new
ones, but without a solid model underlying the work, such improvements
are meaningless. Thus, being able to take a simple model that produces
high-quality science and scaling it up by, say, adding more agents or
performing some additional experimental conditions may be a good
application of new technological developments. Using lovely real-time
graphical displays to illustrate your results can also be productive, as
long as there is good science underlying the results.

B.3 The Old Computer Test

One way to promote both of these practices is to write a computational
model as if it must run on a very slow and limited computer. Writing a
program under such a constraint will often force the modeler to simplify
the work in productive ways. (Of course, once the model is finalized, you
can always run it on the best-quality machine available.) Some of the best
examples of “computational” models, such as Schelling’s Segregation
model, do not even require a computer.

B.4 Avoid Black Boxes

Each part of a model must be as clear and accessible as possible. To
achieve this end, modelers should always default to simple, straight-
forward mechanisms for each element and avoid having parts of the
computation rely on “black boxes” that are composed of massive
amounts of code rife with assumptions and choices that are essentially
hidden from any potential consumers of the model. When models
implement such code, it is difficult to determine whether the outcome
that is observed is being driven by some quirk hidden within the black
box or by a more fundamental law of nature.3

Of course, what is a black box to one person might be a fundamental
component to someone else. For example, one approach pursued in the
cognitive science and artificial-intelligence communities is the creation
of relatively large and complicated computational models of cognitive
processes. These models are composed of various components like

2Indeed, it is not clear to us why speakers feel a need to discuss issues surrounding
hardware or software choices (or, even worse, display computer code) during scientific
seminars. Such discussions are best left for other contexts.

3The fundamental issue here is captured in a cartoon by Sidney Harris that has two
scientists discussing sets of equations on a blackboard divided by the words “then a miracle
occurs.” One says to the other, “I think you should be more explicit here in step two.”
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memory, categorization, inference, and problem solving, each of which
is implemented through an often complicated set of assumptions and
specializations for a given problem domain. If we accept these efforts as
well-formulated and understood models of adaptive behavior, then one
could use them as the basis for creating social systems of adaptive agents,
notwithstanding the black box nature of the computation involved.
Nonetheless, wherever possible, computational modelers should follow
the dictates of Ockham’s razor and favor the adoption of simple struc-
tures. If a simple, low-level adaptive algorithm is able to capture the
behavior of a system adequately, then it should be preferred over more
complicated mechanisms.

B.5 Nest Your Models

There is often an opportunity to create models where special cases of the
assumptions result in well-known (and hopefully understood) examples.
Nesting standard models within computational ones is usually a very
natural process, as computational models are often employed to extend
standard models in interesting, but previously inaccessible, directions.
Once nested, it is easy to compare the model’s predictions in the special
cases with known results, and then to show how the model verifies
known results and observations or, if not, to explain why there is a
divergence.

In the course of developing and fully understanding a computational
model, there are usually plenty of opportunities to include “sanity
checks,” that is, special conditions under which the behavior of the model
is known a priori. Almost any component of a computational model can
be turned off and replaced by a simple alternative. For example, if the
model relies on adaptive agents, complicated objective functions can be
temporarily replaced with simple ones to demonstrate that the agents can
find the optima in such a case. These types of experiments are a good way
to check the basic foundations of the model and should be a routine part
of creating any computational model.

B.6 Have Tunable Dials

One way to nest models is to rely on “tunable” dials for controlling key
assumptions. One interesting dial for economic problems would be a way
to tune agent rationality. Ideally, this dial would allow us to take a fully
optimizing agent and slowly degrade its behavior toward less and less
rationality. Such a dial would provide fodder for a variety of interesting
research questions: Under what conditions does the dial matter? Does the
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behavior of the system undergo slow changes as we turn the dial, or does
the system experience rapid phase transitions where small movements of
the dial result in abrupt changes in the system? What effect does the very
first movement of the dial away from optimality have on the system?

Finding a simple way to represent a rationality dial would be a great
advance, and at the moment even the existence of such a dial is an
open question. That being said, there are areas where dials can be easily
employed; for example, we can vary the degree of look-ahead used by an
agent, the amount of processing, the number of interactions, and so on.

B.7 Construct Flexible Frameworks

Often it is possible to create computational models with simple, flexible
frameworks that “get filled in” by the computation. For example, genetic
algorithms rely on representations of potential solutions that are fairly
general, and it is the evolution of the system that fills in the details.
A well-designed framework puts very few a priori constraints on the
model, and thus the outcome is rich in possibilities. Such frameworks
provide enough flexibility so that the model can explore areas that were
not fully anticipated by the researcher. It is not uncommon for, say, a
genetic algorithm to yield an answer that initially appears wrong, only
to find on closer examination that the algorithm discovered a perfectly
sensible, but wholly unanticipated, result.

Note that even the simplest of frameworks can result in outcomes that
are difficult to understand. For example, consider a simulated neural
network composed of a group of artificial neurons controlled by a
straightforward adaptive algorithm. Such a network provides a very
flexible framework that is constructed of extremely simple components.
However, understanding the outcome of this system can be very difficult,
as it produces a nonlinear function that is often difficult to unravel.
Thus, in addition to simplicity and flexibility, we need models that are
transparent in their operation and outcomes.

B.8 Create Multiple Implementations

Even with an apparently well-defined model, there may be a variety of
choices that must be made before it can be fully implemented. Most
of the time, such choices matter little to the outcome of the model, but
on occasion they may lead to important differences (and hence insights).
Therefore, it is always useful to implement key modeling choices in a
variety of ways.
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One useful way to facilitate the creation of multiple implementa-
tions of a model is to pose it in relatively general terms to different
modelers and have each of them separately define an implementation.
By comparing these various renditions, one can begin to identify the key
issues that need to be addressed. An alternative technique is to have
at least two groups separately code the model (preferably using two
different computer languages). Not only does this process help clarify
the important issues, but it also results in two versions of the model that
can be run in parallel to confirm results and gain insights (Axtell et al.,
1996).

Even within a single, well-defined computer program, there are often
opportunities to implement key features of a model in different ways.
For example, assumptions about, say, probability distributions, agent
matching, timing, and so on, can be manipulated easily. Computational
modelers should always try to have multiple implementations of any
features of the model that will be closely associated with scientific claims.
Thus, it is often useful to implement a variety of adaptive algorithms to
make sure that any particular claims of the impact of adaptive behavior
are not tied to some quirk in a specific algorithm.

B.9 Check the Parameters

Along with implementing various parts of the model in different ways,
computational models should always be subject to a sensitivity analysis
of key parameters. This can either be done manually or through
the use of automated techniques, like Active Nonlinear Tests (ANTs)
(Miller, 1998). Under ANTs, researchers specify their main assumptions
(including parameter values, distribution choices, and so on) and then
use an automated procedure that is designed to “break” the model by
searching over acceptable variations of the assumptions. ANTs can be
used to identify a model’s inherent limits and key driving assumptions.

B.10 Document Code

Most of the coding effort devoted to a computational model, like most
programming, is devoted to documenting the model and getting data into
and out of the system, as opposed to specifying core behavior. Care and
time spent in this domain are necessary for ensuring that the results can
be fully analyzed and easily tied to the exact conditions that produced the
outcome. Software tools, such as Concurrent Versions Systems (CVS),
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can assist in the tracking of the various revisions made to the program
during a research project.

B.11 Know the Source of Random Numbers

Models that rely on random numbers must ensure that the pseudo-
random-number generators used are adequate to the task. It is easy
for the uninitiated to make serious errors in this realm; for example,
using only the lower-ordered bits coming from a pseudo-random-number
generator can be problematic as in some algorithms these bits alternate
in value. Users should always be aware of the algorithmic details of
their generators and take whatever appropriate actions (like shuffling the
resulting values) are needed to avoid problems.

B.12 Beware of Debugging Bias

In all scientific work, there are natural human biases that often confound
good practice. All scientists have some expectations (and dreams) about
the results they will find, and when these are met, it is natural to accept
the findings. If you look at the historical estimates of, say, the speed
of light, you will find that they do not randomly vary centered on the
currently accepted value, but rather they converge on this value biased
by previously published estimates (Henrion and Fischhoff, 1986).

A similar bias can happen in computational models with respect to
debugging. When modelers observe results that are not as expected, they
are likely to spend a lot of effort debugging their code. When their
expectations are met, little such effort is expended. Thus there is an
inherent tendency in researchers that could, if sufficient caution is not
exercised, bias results toward prior expectations.

B.13 Write Good Code

Various software development practices can improve the code underlying
a computational model. Some key lessons from software development
that are applicable here include the following. First, there is a trade-off
among scope (the number and types of features included in the software),
quality (the ability of the code to be understood, modified, and executed
without error), cost (both in terms of development and maintenance),
and delivery date. The trade-off is such that improving one of these
areas causes one of the other areas to degrade (or, as it is sometimes
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stated: scope, quality, cost, time, choose three). Second, the majority of
time on a well-run software development project is not spent in coding,
but rather it is devoted to developing a solid, well-articulated design for
the software. The third important lesson from software development is
that the cost of correcting errors dramatically increases with the amount
of time that elapses before the error is identified and fixed. Thus, an error
in the design stage costs ten times more to correct in the coding stage and
a hundred times more to fix after the program is in use. Finally, there
are dramatic differences in the practices of professional versus amateur
software coders (even among the professional coders, the productivity
can differ by a factor of ten or more), and all computational modelers
should make sure that their skills are sufficiently advanced for the task
at hand. McConnell (1993) provides a nice overview of the basics for
writing high-quality, extendable, easily communicated code.

Good software development is extremely difficult, and given the
complexity of the underlying task, newness of the area, and rapid
changes in technology, it is not too surprising that ideas about how
best to accomplish this task are in constant flux. Much like business
management fads, every few years new methods of software development
are proposed that promise to solve all of the existing problems.

While it is doubtful that such a silver bullet will emerge anytime soon,
there may be parts of certain development methodologies that are useful
for computational modelers. For example, the Extreme Programming
movement incorporates a number of practices that closely match the
needs of scientific modelers, six of which we list here: key features of the
program are added in the order of most value; overall planning is limited
to current needs; each component of the program is associated with a
comprehensive unit test that ensures that it is implemented appropriately;
an effort is made to improve the code (refactor) whenever possible;
development time estimates are based on recent experience; and new
versions of the program are released on very short time scales.

Scientific researchers undertaking the development of ambitious soft-
ware projects should consider adopting a real software development
“process” (versus the usual “code and fix” methodology). Although real
processes do introduce some additional overhead costs into the project
(especially initially), the higher-quality software that is produced by such
methods allows these overhead costs to be quickly recovered.

B.14 Avoid False Precision

When reporting computational work, be aware that there is an appro-
priate level of precision that can be associated with the results. This
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concept holds at all levels of the model. At the lowest level, make sure
that numeric results are appropriately reported. At a higher level, given
the inherent nature of all modeling, beware of making too much of
subtle differences. The important results from a model are typically not
very subtle and tend to be obvious, both qualitatively and quantitatively,
across a variety of conditions.

B.15 Distribute Your Code

Computational models should be easily accessible to other researchers.
Models that follow the practices outlined here are often more accessible
to others, because they entail simple, high-quality code, that is well
written and documented, and thus easily understood and implemented
by others. Code for published models should be easily available to others
so that they can replicate the results. Some researchers are also willing to
distribute code prior to publication (perhaps with some stipulations on
its use).

B.16 Keep a Lab Notebook

Once developed, computational models are often deployed in a way that
is very similar to laboratory experiments in biology or chemistry. In
these areas, there is a long tradition of keeping a laboratory notebook
that details particular hypotheses, the experiments designed to test the
hypotheses, and the outcomes and conclusions of these tests. Such
notebooks not only provide an important historical record of the
work, but they may also give the researcher additional insights and
understanding about the system. Such research notebooks may have a
similar value for computational experiments.

B.17 Prove Your Results

Whenever possible, computational results should be clarified and verified
as thoroughly as possible. Computational results should always be placed
in their appropriate statistical context. More important, researchers
should strive to eliminate as many alternative hypotheses as possible
through well-designed experiments. Indeed, a better name for this section
might be “disprove your results”—researchers should always try to
disprove their key results to the best of their ability.
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Researchers should try to use alternative means to solidify key findings.
Thus, it is often possible to apply more traditional tools to parts of
the analysis by, say, proving a theorem about a particular phenomena
observed in the model. Although such techniques may not work on
the whole model, they often work on particular parts or special cases.
Whenever possible, the analysis of computational models should be
enhanced with complementary modeling efforts.

B.18 Reward the Right Things

Like any branch of science, one needs to reward the right accomplish-
ments. While it may be true that lovely graphics, advanced coding
techniques, frontier hardware, and so on may enhance computational
models, ultimately it is the resulting science that must be judged. Scientific
judgments in this area should focus not on the computer per se, but on
the quality and simplicity of the model, the cleverness of the experimental
designs, and the new insights gained by the effort.
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